
https://ibm.biz/bma-wiki

Benoit MAROLLEAU – Cloud Architect
IBM Client Engineering, Montpellier, France
benoit.marolleau@fr.ibm.com

Ansible
Comment démarrer rapidement

https://ibm.biz/bma-wiki
mailto:benoit.marolleau@fr.ibm.com

Agenda

Introduction
Ansible Overview

• Architecture, Engine, Tower
• Ansible for IBM i

Terminology – How Ansible works
• Inventory
• Configuration file
• Modules
• Playbooks and Roles

Next Steps : LABS

Ansible Overview

“Ansible is an open source automation tool for provisioning,
orchestration, system configuration and patching”

First developed by Michael DeHaan and acquired by Red Hat in 2015.

Ansible Overview

Ansible Overview

What is Red Hat
Ansible Engine?
Ansible Engine provides the core, agentless
functionality of Ansible that everything else
builds upon

Includes the basic building blocks of Ansible—
the control node, managed nodes (endpoints),
inventory, modules, tasks and playbooks

Commercial form of Ansible technology

Available for subscription purchase from Red
Hat—from a POWER perspective, includes
enterprise support options for AIX and IBM i
managed endpoints
(in June 2020)

Red Hat Ansible Engine supported
on x86 Linux only — manages to endpoints

Cloud modules:
IBM, OpenStack (PowerVC), AWS,
Google, Azure, Alibaba, etc.

6

Ansible Endpoints

https://www.ansible.com/integrations/infrastructure/ibm-power-systems

https://www.ansible.com/integrations/infrastructure/ibm-power-systems

Introduction to Ansible

Ansible is a radically simple IT automation platform
that makes your applications and systems easier to
deploy.

− Free open source application
− Agent-less – No need for agent installation

and management
− Python/YAML based
− Highly flexible and configuration management

of systems.
− Configuration roll-back in case of error

Introduction to Ansible

Ansible and IBM i

Write your first “playbook” in YAML format to describe what you want on your managed node
inventory and Ansible will , for example :

ü Deploy or clone a new environment on an IBM i VM on either a private or public cloud

ü Install a new licensed program product or application version containing libraries,
database and IFS artifacts

ü Save or restore objects, manage servers or jobs and check and install PTFs

ü Control your security settings, like managing user profiles and authorities, or check IFS
rights. Ansible gathers facts and can remediate any security deviations.

ü Orchestrate all of the above or a subset of these tasks

https://developer.ibm.com/tutorials/ansible-automation-for-power/

Ansible and IBM i
Core modules in PASE + IBM i Specific Modules

Core Maintained modules are maintained by the Ansible Engineering Team.
• Core modules are owned by RedHat and ship with Ansible installation.
• Many of these modules work for IBM i PASE environment.
• Support PASE but not native IBM i.

•command
• raw
•script
•shell
•pip
•yum
•pause
•wait_for_connection
•at
•authorized_key
•gather_facts
•group
•Mount

•ping
• reboot
•setup
•user
•assemble
•blockinfile
•copy
• fetch
• file
• find
• lineinfile
•stat
•synchronize
•git

Ansible and IBM i
- CL Commands

Executes CL commands and return general and
detail job logs

- SQLs executions
Executes SQL statements and return the results
Queries – compare the returned single value result
Inserts / Updates / Deletes
Functions & Procedures

- Gathering facts and setup changes for IBM i
- Securities – authorization list, user profiles, grant

object authorities
- Copy Objects, Fetch Objects, Find Objects
- Reply Message – query and reply
- Reboot system
- Network configurations
- Device configurations and management
- IASP configuration
- System Values, Environment variables, Etc.
- Submit / Schedule Jobs
- Manage fixes / PTFs / LPPs

- …. More to come!!! Check out

ibmi_at
Schedule a batch job on a remote IBMi node.
ibmi_cl_command
Executes a CL command.
ibmi_copy
Copy a save file from local to a remote IBMi node.
ibmi_display_subsystem
Display all currently active subsystems or currently active jobs in a subsystem.
ibmi_end_subsystem
End a subsystem.
ibmi_fetch
Fetch objects or a library from a remote IBMi node and store on local.
ibmi_install_product_from_savf
Install the the licensed program(product) from a save file.
ibmi_lib_restore
Restore one library on a remote IBMi node.
ibmi_lib_save
Save one libary on a remote IBMi node.
ibmi_object_authority
Grant, Revoke and Display the Object
Authority.
ibmi_object_restore
Restore one or more objects
on a remote IBMi node.

Ibmi_object_save
Save one or more objects on a remote IBMi node.
ibmi_reboot
Reboot IBMi machine.
ibmi_save_product_to_savf
Save the the licensed program(product) to a save file.
ibmi_script
Execute a local cl/sql script file on a remote ibm i node.
ibmi_script_execute
Execute a cl/sql script file on a remote ibm i node.
ibmi_sql_execute
Executes a SQL non-DQL(Data Query Language) statement.
ibmi_sql_query
Executes a SQL DQL(Data Query Language) statement.
ibmi_start_subsystem
Start a subsystem.
ibmi_sync
Synchronize a save file from current ibm i node A to another ibm i node B.
ibmi_synchronize
Synchronize a save file from ibm i node A to another ibm i node B.
ibmi_uninstall_product
Delete the objects that make up the licensed program(product).
ibmi_user_and_group
Create, Change and Display a user(or group) profile.

https://github.com/IBM/ansible-for-i

Core modules in PASE + IBM i Specific Modules

https://github.ibm.com/IBMi-Cloud/ansible-for-i-development/blob/master/lib/ansible/modules/ibmi/ibmi_at.py
https://github.ibm.com/IBMi-Cloud/ansible-for-i-development/blob/master/lib/ansible/modules/ibmi/ibmi_cl_command.py
https://github.ibm.com/IBMi-Cloud/ansible-for-i-development/blob/master/lib/ansible/modules/ibmi/ibmi_copy.py
https://github.ibm.com/IBMi-Cloud/ansible-for-i-development/blob/master/lib/ansible/modules/ibmi/ibmi_display_subsystem.py
https://github.ibm.com/IBMi-Cloud/ansible-for-i-development/blob/master/lib/ansible/modules/ibmi/ibmi_end_subsystem.py
https://github.ibm.com/IBMi-Cloud/ansible-for-i-development/blob/master/lib/ansible/modules/ibmi/ibmi_fetch.py
https://github.ibm.com/IBMi-Cloud/ansible-for-i-development/blob/master/lib/ansible/modules/ibmi/ibmi_install_product_from_savf.py
https://github.ibm.com/IBMi-Cloud/ansible-for-i-development/blob/master/lib/ansible/modules/ibmi/ibmi_lib_restore.py
https://github.ibm.com/IBMi-Cloud/ansible-for-i-development/blob/master/lib/ansible/modules/ibmi/ibmi_lib_save.py
https://github.ibm.com/IBMi-Cloud/ansible-for-i-development/blob/master/lib/ansible/modules/ibmi/ibmi_object_authority.py
https://github.ibm.com/IBMi-Cloud/ansible-for-i-development/blob/master/lib/ansible/modules/ibmi/ibmi_object_restore.py
https://github.ibm.com/IBMi-Cloud/ansible-for-i-development/blob/master/lib/ansible/modules/ibmi/ibmi_reboot.py
https://github.ibm.com/IBMi-Cloud/ansible-for-i-development/blob/master/lib/ansible/modules/ibmi/ibmi_save_product_to_savf.py
https://github.ibm.com/IBMi-Cloud/ansible-for-i-development/blob/master/lib/ansible/modules/ibmi/ibmi_script.py
https://github.ibm.com/IBMi-Cloud/ansible-for-i-development/blob/master/lib/ansible/modules/ibmi/ibmi_script_execute.py
https://github.ibm.com/IBMi-Cloud/ansible-for-i-development/blob/master/lib/ansible/modules/ibmi/ibmi_sql_execute.py
https://github.ibm.com/IBMi-Cloud/ansible-for-i-development/blob/master/lib/ansible/modules/ibmi/ibmi_sql_query.py
https://github.ibm.com/IBMi-Cloud/ansible-for-i-development/blob/master/lib/ansible/modules/ibmi/ibmi_start_subsystem.py
https://github.ibm.com/IBMi-Cloud/ansible-for-i-development/blob/master/lib/ansible/modules/ibmi/ibmi_sync.py
https://github.ibm.com/IBMi-Cloud/ansible-for-i-development/blob/master/lib/ansible/modules/ibmi/ibmi_synchronize.py
https://github.ibm.com/IBMi-Cloud/ansible-for-i-development/blob/master/lib/ansible/modules/ibmi/ibmi_uninstall_product.py
https://github.ibm.com/IBMi-Cloud/ansible-for-i-development/blob/master/lib/ansible/modules/ibmi/ibmi_user_and_group.py
https://github.com/IBM/ansible-for-i

Ansible and IBM i
Playbooks Examples

§ enable-ansible-for-i
o ibmi-install-rpm.yml
o ibm-install-yum.yml
o setup.yml

§ ibmi-install-nodejs
o ibmi-install-nodejs.yml

o ibmi-check-default-passwords.yml
o ibmi-cl-command-sample.yml
o ibmi-fix-group-check.yml
o ibmi-fix-repo-cum-package.yml
o ibmi-sysval-sample.yml
o query-iasp-sample.yml
o ibmi-sql-sample.yml

https://github.com/IBM/ansible-for-i

https://github.com/IBM/ansible-for-i/tree/devel/playbooks/enable-ansible-for-i
https://github.com/IBM/ansible-for-i/tree/devel/playbooks/ibmi-install-nodejs
https://github.com/IBM/ansible-for-i/blob/devel/playbooks/ibmi-check-default-passwords.yml
https://github.com/IBM/ansible-for-i/blob/devel/playbooks/ibmi-cl-command-sample.yml
https://github.com/IBM/ansible-for-i/blob/devel/playbooks/ibmi-fix-group-check.yml
https://github.com/IBM/ansible-for-i/blob/devel/playbooks/ibmi-sysval-sample.yml
https://github.com/IBM/ansible-for-i/blob/devel/playbooks/query-iasp-sample.yml
https://github.com/IBM/ansible-for-i

Galaxy – power_ibmi

Galaxy – power_ibmi

Ansible Support & Installation

Ø Ansible on Linux (x86/Power) : Community + Possible Red Hat Subscription and support

Ø Ansible on IBM i : Community + Possible IBM TSS Support (Open Source package)

Ø Ansible can be installed via your Linux distribution package manager
Ø yum install ansible or apt install ansible
Ø If not available, just install python-pip and dependencies and install it with “pip”

Ø pip install ansible

Ø Clone the repository to your Ansible server (or install IBM i Galaxy)
Ø https://github.com/IBM/ansible-for-i

Ø Create your inventory file
Ø example can be found in file examples/ibmi/host_ibmi.ini

https://ibm.github.io/ansible-for-i/installation.html

https://www.ansible.com/integrations/infrastructure/ibm-power-systems
https://www.ibm.com/support/pages/open-source-support-ibm-i
https://github.com/IBM/ansible-for-i
https://ibm.github.io/ansible-for-i/installation.html

Ansible Overview – key points

1. Ansible Engine can manage a large number of clients (via an inventory)
2. It does not require an agent on the clients
3. Uses SSH to communicate with the clients
4. The clients can be AIX, IBM i, RHEL, Ubuntu, SLES, Centos, Fedora,

network switches, storage controllers etc.….
5. Human readable automation
6. No special coding skills needed
7. Uses modules to perform tasks, these tasks can be called from the

command line or playbooks
8. It is idempotent
9. Simple to get started

Architecture

1. Ansible Engine

2. Inventory

3. Modules

4. Playbooks

5. Client hosts

How Ansible works

1. Ansible Engine

2. Inventory

3. Modules

4. Playbooks

5. Client hosts

The Inventory (and
configuration file)

How Ansible works – The Inventory

1. The client inventory file is a configurable list of VMs/clients that ansible can control.
2. It is written in an INI or YAML format, lists host and groups.
3. Can be static of dynamic.

cat /etc/ansible/hosts
[managedClients]
[RHEL_Dev]
lab-rhel-1
lab-rhel-2

[IBMi_Dev]
lab-ibmi-1
lab-ibmi-2

[Dev:children]
RHEL_Dev
IBMi_Dev

Group Name
Client Name

Collection of groups

Static Inventory example

How Ansible works – The Inventory

So we can list the files in the inventory by using ‘ansible-inventory’
ansible-inventory --graph
@all:

|--@Dev:
| |--@IBMi_Dev:
| | |--lab-ibmi-1
| | |--lab-ibmi-2
| |--@RHEL_Dev:
| | |--lab-rhel-1
| | |--lab-rhel-2
|--@local:
| |--localhost

Group Name
Client Name

Collection of groups

How Ansible works – The Inventory

We can use the inventory file to configure some connection options to the clients.

cat /etc/ansible/hosts
[managedClients]
[RHEL_Dev]
lab-rhel-1 ansible_user=ansible
lab-rhel-2 ansible_port=222

[IBMi_Dev]
lab-ibmi-1 ansible_host=10.1.1.1
lab-ibmi-2

[Dev:children]
RHEL_Dev
IBMi_Dev

Client unique variables

Static Inventory example with connection variables

How Ansible works – The Inventory

We can use the inventory file to configure some connection options to the clients.

ansible-inventory –list
….
"hostvars": {

"lab-ibmi-1": {
"ansible_host": "10.1.1.1"

},
"lab-rhel-1": {

"ansible_user": "ansible"
},
"lab-rhel-2": {

"ansible_port": 222
}

….

How Ansible works – The Inventory

We can use the inventory file to configure group connection options to the clients.

cat /etc/ansible/hosts
[managedClients]
[RHEL_Dev]
lab-rhel-1 ansible_user=ansible
lab-rhel-2 ansible_port=222

[IBMi_Dev]
lab-ibmi-1 ansible_host=10.1.1.1
lab-ibmi-2

[Dev:children]
RHEL_Dev
IBMi_Dev

[IBMi_Dev:vars]
proxy=proxy.labs.uk.ibm.com

Variable applies to whole group

Static Inventory example with group connection variables

How Ansible works – The Inventory

We can use the inventory file to configure group connection options to the clients.
ansible-inventory –list
….
"hostvars": {
"lab-ibmi-1": {

"ansible_python_interpreter": "/QOpensys/pkgs/bin/python3",
"ansible_ssh_common_args": "-o StrictHostKeyChecking=no",
"ansible_ssh_user": "benoit"

},
"lab-ibmi-2": {

"ansible_python_interpreter": "/QOpensys/pkgs/bin/python3",
"ansible_ssh_common_args": "-o StrictHostKeyChecking=no",
"ansible_ssh_user": "benoit"

}
},
"lab-rhel-1": {

"ansible_user": "ansible"
},
"lab-rhel-2": {

"ansible_port": 222
}

….

Both clients in the group have
picked up the new connection
variable

How Ansible works – The Inventory

We have a number of ways to tell Ansible which inventory file to use, in precedence:

1. the ‘-i’ flag on the command line (you can call more than one inventory file if needed)
2. The ANSIBLE_INVENTORY environment variable
3. Using “inventory=xxx” in the ansible configuration file
4. If all else fails, the default is /etc/ansible/hosts

ansible -v -a "echo Inventory File is {{ inventory_file }}" localhost
Using /etc/ansible/ansible.cfg as config file
….
- Inventory

- File
- is
- /etc/ansible/hosts

….

Method to check which inventory file you are using

How Ansible works – The ansible config file

Ansible looks for a configuration file to determine a number of parameters. As with the
inventory file, a number of configuration files can be defined for different projects.

Nearly all parameters in ansible.cfg can be overwritten in playbooks or during ansible calls.

cat /etc/ansible/ansible.cfg
[defaults]
inventory = /etc/ansible/hosts
library = /usr/share/ansible/plugins/modules
module_utils = /usr/share/my_module_utils/
remote_tmp = ~/.ansible/tmp
local_tmp = ~/.ansible/tmp
sudo_user = root
ask_sudo_pass = True
ask_pass = True
remote_port = 22
…..

Example ansible.cfg fie

How Ansible works – The ansible config file

The active configuration files uses the following locations, in precedence:

1. The ANSIBLE_CONFIG environment variable
2. ./ansible.cfg - within the current directory
3. ~/.ansible.cfg. - home directory
4. If all else fails, the default is /etc/ansible/ansible.cfg

ansible --version
ansible 2.9.6

config file = /etc/ansible/ansible.cfg
configured module search path = [u'/root/.ansible/plugins/modules', u'/usr/share/ansible/plugins/modules']
ansible python module location = /usr/lib/python2.7/site-packages/ansible
executable location = /usr/bin/ansible
python version = 2.7.5 (default, Jun 11 2019, 14:33:56) [GCC 4.8.5 20150623 (Red Hat 4.8.5-39)]

Method to check which configuration file you are using

How Ansible works

1. Ansible Engine

2. Inventory

3. Modules

4. Playbooks

5. Client hosts

Modules

How Ansible works – Modules
Modules are the core of Ansible

1. They perform the real work by executing on the clients.
ü Ansible engine connects to your clients
ü It pushes out the module along with parameters
ü The module is then executed on the client
ü The module is then removed from the client

2. Ansible comes with thousands of modules covering server, network, storage, files, DB etc.
3. Can be written in Python, Perl, Ruby, Bash, etc. – that return JSON format
4. You can write your own modules
5. Command line syntax: ’ansible –m <module_name> -a <attributes>’
6. They are idempotent (that word again)….
Dictionary definition:
“denoting an element of a set which is unchanged in value when multiplied or otherwise operated on by itself”

“For Ansible it means after 1 run of a playbook to set things to a desired state, further runs of the same playbook
should result in 0 changes. Idempotency means you can be sure of a consistent state in your environment.”

How Ansible works – Modules (idempotency)

ansible lab-aix-1 -m aix_lvol -a "lv=testlv size=10M vg=rootvg"
PLAY [Ansible Ad-Hoc] ***
TASK [aix_lvol] ***
changed: [lab-aix-1]

PLAY RECAP

lab-ibmi-1 : ok=1 changed=1 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0

Add a logical volume – first run

ansible lab-aix-1 -m aix_lvol -a "lv=testlv size=10M vg=rootvg"
PLAY [Ansible Ad-Hoc]***
TASK [aix_lvol] ***
ok: [lab-aix-1]

PLAY RECAP
**
lab-ibmi-1 : ok=1 changed=0 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0

Add a logical volume – second run

During the first run a change
occurs. The LV is created.

During the second run a change does
NOT occur. The LV already exists.

How Ansible works – Modules Ad-hoc Execution

ansible IBMi_Dev -m ibmi_cl_command --args="cmd='crtlib ansiblei' asp_group=*SYSBAS"

lab-ibmi-1 | SUCCESS => {
"changed": false,

"cmd": "crtlib ansiblei",
"job_name": "402155/QUSER/QSQSRVR",

"stdout": "{'success': '+++ success crtlib ansiblei'}",
}

crtlib – first run

Crtlib – second run

During the second run a change does
NOT occur. The LV already exists.

During the first run, lib created

ansible IBMi_Dev -m ibmi_cl_command --args="cmd='crtlib ansiblei' asp_group=*SYSBAS"

lab-ibmi-1 | FAILED! => {
"changed": false,

"job_log": [
{ "FROM_PROGRAM": "QLICRLIB", "FROM_USER": "BENOIT", "MESSAGE_ID": "CPF2111",

"MESSAGE_SECOND_LEVEL_TEXT": "&N Recovery . . . : Before creating or renaming this library, change the new library name
or delete the existing library (DLTLIB command). &P -- Use DSPLIB ASPDEV(*ALLAVL) to search for the library.

During the second run, lib not created
but need to catch the error

Conclusion : Module ibmi_cl_command not idempotent

How Ansible works – Modules
Ansible comes with thousands of ‘core’ modules, divided into categories:
https://docs.ansible.com/ansible/latest/modules/modules_by_category.html#modules-by-category

https://docs.ansible.com/ansible/latest/modules/modules_by_category.html

How Ansible works – Modules

As well as Anisble’s website we can also use the Ansible Engine server to show modules, how
they are supported, options available etc.

ansible-doc ibmi_cl_command
>IBMI_CL_COMMAND (/Users/Benoit2/.ansible/collections/ansible_collections/ibm/power_ibmi/plugins/modules/ibmi_cl_command.py)

The `ibmi_cl_command' module takes the CL command followed by a list of space-delimited arguments.
For PASE(Portable Application Solutions Environment for i) or QSHELL(Unix/Linux-liked) commands,
like 'ls', 'chmod', use the `command' module instead.

- become_user
The name of the user profile that the IBM i task will run under.
Use this option to set a user with desired privileges to run the task.
[Default: (null)]
type: str

= cmd
The CL command to run.
type: str

- joblog
If set to `true', output the available job log even the rc is 0(success).
……

Using ‘ansible-doc’ to review a module

The “=“ indicates mandatory
parameters.

Shows the location of the
module and support level.

How Ansible works – Modules

What happens if we call an invalid module?
ansible lab-ibmi-1 -m ibmi_lib_save --args="lib_name=ansiblei format=*SAVF"

lab-ibmi-1 | FAILED! => {
"changed": false,
"msg": "missing required arguments: savefile_lib, savefile_name"

}

ansible lab-ibmi-1 -m ibmi_lib_save --args="lib_name=ansiblei format=*SAVF savefile_lib=QGPL savefile_name=ansiblei"

lab-ibmi-1 | SUCCESS => {
"changed": false,
"command": "QSYS/SAVLIB LIB(ansiblei) DEV(*SAVF) SAVF(QGPL/ansiblei) TGTRLS(*CURRENT)", "format": "*SAVF",
"stdout": "{'success': '+++ success QSYS/SAVLIB LIB(ansiblei) DEV(*SAVF) SAVF(QGPL/ansiblei) TGTRLS(*CURRENT)'}",

……
}

Calling an IBM i module

Module with missing
parameters

How Ansible works – Modules

ü script module – Runs a local script on a remote node after transferring it

cat ./show_date.sh
#!/bin/sh
date

ansible lab-ibmi-1 -m script -a "./date.sh"
lab-ibmi-1 | CHANGED => {

"changed": true,
"rc": 0,
"stderr": "Shared connection to lab-ibmi-1 closed.\r\n",
"stderr_lines": [

"Shared connection to lab-ibmi-1 closed."
],
"stdout": "Wed Sep 21 16:40:47 CEST 2022\r\n",
"stdout_lines": [

"Wed Sep 21 16:40:47 CEST 2022"
]

}

Simple ‘script’ module example

Script on the Ansible Engine

Script is copied over and
executed on the client

How Ansible works – Modules (setup and facts)

ü setup module – Gathers facts about remote hosts (~100 lines for a IBM i LPAR)

ansible lab-ibmi-1 -m setup
lab-ibmi-1 | SUCCESS => {

"ansible_facts": {
"ansible_distribution": "OS400",
"ansible_distribution_release": "3",
"ansible_distribution_version": "7",
"ansible_dns": {},
"ansible_domain": "dcry.iccmop",
"ansible_effective_group_id": 0,
"ansible_effective_user_id": 150,
"ansible_env": {

"HOME": "/home/BENOIT",
"LOGIN": "benoit",
"USER": "benoit",
"_": "/QOpensys/pkgs/bin/python3"

},
"ansible_machine": "00100002BABV",
"ansible_nodename": "BENOIT",
"ansible_os_family": "OS400",

…..

Setup module

Thousands of facts about h/w, OS,
network and storage devices etc.
can be gathered.

These can be used to filter which
clients to run a task against in a
playbook.

How Ansible works

1. Ansible Engine

2. Inventory

3. Modules

4. Playbooks

5. Client hosts

Playbooks

How Ansible works – Playbooks

Modules might be the core, but Playbooks are how we drive Ansible

ü Playbooks are Ansible’s configuration, deployment, and orchestration language.
ü They are the instruction manual describing the configuration you want your remote clients

to enforce.
ü Written in YAML format, so should be readable.

Basic playbooks:
Used to manage configurations of and deployments to remote machines.

Advanced playbooks:
They can sequence multi-tier rollouts involving rolling updates, and can delegate actions to
other hosts, interacting with monitoring servers and load balancers along the way.

How Ansible works – Playbooks

A playbook consists of ‘plays’, which in turn consist of ’tasks’, which contain ’modules’.

cat ibmi-cl-command-sample.yml

- name: Sample CL Commands
gather_facts: no
hosts: IBMi_Dev

- name: run the CL command to create a library
ibmi_cl_command:
cmd: crtlib lib(ansiblei)
joblog: true

Simple playbook

PlaybookPlay

Task

How Ansible works – Playbooks

A playbook consists of ‘plays’, which in turn consist of ’tasks’, which contain ’modules’.

cat ibmi-cl-command-sample.yml

- name: Sample CL Commands
gather_facts: no
hosts: IBMi_Dev
collections:
- ibm.power_ibmi

tasks:
- name: run the CL command to create a library
ibmi_cl_command:
cmd: crtlib lib(ansiblei)
joblog: true

- name: save the library in a SAVF
ibmi_lib_save:
lib_name: ansiblei
format: '*SAVF'
savefile_lib: QGPL
savefile_name: ansiblei
force_save: true

Simple playbook

Define the ‘play’

Do not gather facts

Which hosts to run the play against. ‘All’ will
run it against all clients in the inventory

Define the ‘task’
The name of the module to call for this task

Module parameters to use for this task

How Ansible works – Playbooks

A playbook consists of ‘plays’, which in turn consist of ’tasks’, which contain ’modules’.

ansible-playbook ibmi-cl-command-sample2.yml

PLAY [Sample CL Commands]

TASK [run the CL command to create a library]

ok: [lab-ibmi-1]
ok: [lab-ibmi-2]

TASK [save the library in a SAVF]

ok: [lab-ibmi-1]
ok: [lab-ibmi-2]

PLAY RECAP ***
lab-ibmi-1 : ok=2 changed=0 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0
lab-ibmi-2 : ok=2 changed=0 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0

Simple playbook

The name of the ‘play’

The name of the ‘task’

Completed on 2 clients

How Ansible works – Playbooks (tasks and tags)

We can list the tasks in a playbook without actually running it:

ansible-playbook ./ibmi-cl-command-sample2.yml --list-tasks

playbook: ibmi-cl-command-sample2.yml

play #1 (IBMi_Dev): Sample CL Commands TAGS: []
tasks:

run the CL command to create a library TAGS: []
save the library in a SAVF TAGS: []

Task in a playbook

All the tasks are listed
but not executed

How Ansible works – Playbooks (tasks and tags)

We can also ‘tag’ tasks with identifiers :

cat ./ibmi-cl-command-sample2.yml
…
tasks:
- name: run the CL command to create a library
ibmi_cl_command:
cmd: crtlib lib(ansiblei)
joblog: true

tags: crtlib
- name: save the library in a SAVF
ibmi_lib_save:
lib_name: ansiblei
format: '*SAVF'
savefile_lib: QGPL
savefile_name: ansiblei
force_save: true

tags: savefile

….

Task and tags in a playbook

We can add ‘tag’
names to each task.

How Ansible works – Playbooks (tasks and tags)

We can also ‘tag’ tasks with identifiers, and list them:

ansible-playbook ./ibmi-cl-command-sample2.yml --list-tasks

playbook: ibmi-cl-command-sample2.yml

play #1 (IBMi_Dev): Sample CL Commands TAGS: []
tasks:

run the CL command to create a library TAGS: [crtlib]
save the library in a SAVF TAGS: [savefile]

Task and tags in a playbook

How Ansible works – Playbooks (tasks and tags)

We can then just run certain tasks, by giving a tag:

ansible-playbook ibmi-cl-command-sample2.yml --list-tasks -t savefile
playbook: ./ibmi-cl-command-sample2.yml

play #1 (IBMi_Dev): Sample CL Commands TAGS: []
tasks:

save the library in a SAVF TAGS: [savefile]

List savefile tasks only

ansible-playbook ibmi-cl-command-sample2.yml -t savefile
PLAY [Sample CL Commands]
**
TASK [save the library in a SAVF]
**
ok: [lab-ibmi-1]
ok: [lab-ibmi-2]

PLAY RECAP **
lab-ibmi-1 : ok=1 changed=0 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0
lab-ibmi-2 : ok=1 changed=0 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0

Run ‘savefile’ tasks only

How Ansible works – Playbooks (variables)

We can define variables from within the playbook

cat Install_VMRM_agent_v1.0.yml
……

vars:
source_dir: /root/VMRM_Code
target_dir: /tmp
aix_code: ksys.vmmon.rte
rhel_code: vmagent-1.3.0-1.0.el7.ppc64le.rpm

- name: Copy VM agent code - AIX
copy:

src="{{ source_dir }}/{{ aix_code }}"
dest="{{ target_dir }}/{{ aix_code }}"

- name: Copy VM agent code - RHEL
copy:

src="{{ source_dir }}/{{ rhel_code }}"
dest="{{ target_dir }}/{{ rhel_code }}"

Playbook variables example

Variable defined in the playbook

Different variables used

Copy module called

How Ansible works – Playbooks (variables)

We can ‘include’ variables from an external file. There is a ‘priority’ order of var definition

cat OSlevel_check.yml

- hosts: all

tasks:
- name: Load IBMi specific variables

include_vars: IBMi.yml

- name: Check OS
command: "{{ os_check_command }}”

Imported variables example

We include an external variables file

The command modules needs a
variable called ‘os_check_command’

cat IBMi.yml

variables for script
os_check_command: "oslevel -s"
args_variable_name: ”IBMi_OS"

The ‘os_check_command’ is defined
in this variable file and passed back
to the main playbook.

How Ansible works – Playbooks (conditions)

We can run tasks against ‘facts’ gathered from the clients, for example OS type

cat OSlevel_check.yml

- hosts: Dev

tasks:
- name: Load AIX specific variables

include_vars: AIX.yml
when: ansible_distribution == "AIX"

- name: Load RHEL specific variables
include_vars: RHEL.yml
when: ansible_distribution == "RedHat”

- name: Load IBM i specific variables
include_vars: IBMi.yml
when: ansible_distribution == ”OS400"

- name: Check OS
command: "{{ os_check_command }}"
register: os_check_result
args:

creates: "{{ args_variable_name }}"

Playbook ‘when’ example

Include a different variable file
depending on the clients OS type

The relevant OS command is passed back

How Ansible works – Playbooks (Roles)

As we start out with Ansible we tend to create one or two large playbooks

Although this is a good start we may want to reuse file and avoid repeating code.

Roles, import and includes are a good way to do this.

Roles allow us to automatically load certain variables, tasks and handlers based on a know file
structure. These can then be shared amongst other uses and projects.

How Ansible works – Playbooks (Roles)
Creating a role:

ansible-galaxy init db-server-role
- Role db-server-role was created successfully

tree
.
└── db-server-role
├── defaults
│ └── main.yml
├── files
├── handlers
│ └── main.yml
├── meta
│ └── main.yml
├── README.md
├── tasks
│ └── main.yml
├── templates
├── tests
│ ├── inventory
│ └── test.yml
└── vars

└── main.yml

Directory structure of a role:

If main.yml playbooks exist within the role, the
tasks, handlers, variable etc. listed within will
be added to the play that called it.

How Ansible works – Playbooks (Roles)
Why do we need roles?? If we look at our OpenStack playbook that creates AIX, Linux or IBMi VMs, its complex:
ansible-playbook playbooks/VM_build.yml --list-tasks
play #1 (localhost): Build new VM via PowerVC/OpenStack TAGS: []

tasks:
Prompt for new VM Name TAGS: [VM_Create]
Set VM Variables TAGS: [VM_Create]
Display VM Name TAGS: [VM_Create]
VM_network_list : Retrieve list of all networks TAGS: [VM_Create, VM_Network]
VM_network_list : Generate Network list TAGS: [VM_Create, VM_Network]
VM_network_list : Debug - Output Network list TAGS: [VM_Create, VM_Network]
VM_network_list : Display Network list TAGS: [VM_Create, VM_Network]
……
VM_image_list : Retrieve list of all OS Distributions TAGS: [VM_Create, VM_Images]
VM_image_list : Filter OS Distribution list TAGS: [VM_Create, VM_Images]
…..
VM_flavor_list : Retrieve list of all public flavors TAGS: [VM_Flavor, always, never]
….
VM_name_list : Retrieve list of all VMs TAGS: [VM_Create, VM_List]
VM_name_list : Retrieve VM list TAGS: [VM_Create, VM_List]
….
VM_create_vm : Create a new VM instance TAGS: [VM_Create]
VM_create_vm : Print VM's public IP address TAGS: [VM_Create]

Each group
of tasks is in
its own role

65 tasks in total

How Ansible works – Playbooks (Roles)
These roles can be used multiple times from other playbooks, other users or other projects:
cat playbooks/VM_build.yml

- name: Build new VM via PowerVC/OpenStack

tasks:
- name: List Available Networks

import_role:
name: VM_network_list

tags: VM_Create, VM_Network

- name: Pick Network for VM
import_role:

name: VM_network_pick
tags: VM_Create

- name: List VM images
import_role:

name: VM_image_list
tags: VM_Create, VM_Images

……

Within the tasks we import each role

How Ansible works – Other features

Handlers
Handlers are lists of tasks, that are referenced by a globally unique name, and are notified by notifiers. If nothing notifies a
handler, it will not run. Regardless of how many tasks notify a handler, it will run only once, after all of the tasks complete in
a particular play.

Blocks
Blocks allow for logical grouping of tasks and in play error handling. Most of what you can apply to a single task can be
applied at the block level, which also makes it much easier to set data or directives common to the tasks.

Vaults
Ansible Vault is a feature of ansible that allows you to keep sensitive data such as passwords or keys in encrypted files, rather
than as plaintext in playbooks or roles. These vault files can then be distributed or placed in source control.

Galaxy
Ansible Galaxy refers to the Galaxy website, a free site for finding, downloading, and sharing community developed roles.
https://galaxy.ansible.com/home

You don’t like putty and ssh screen ?
• Ansible tower helps to launch ansible playbook using a GUI

But still running ansible playbooks !

Ansible Tower

Ansible Tower is a UI and RESTful API allowing you to scale IT automation, manage complex
deployments and speed productivity.
• Role-based access control
• Deploy entire applications with push-button deployment access
• All automations are centrally logged
• Powerful workflows match your IT processes

Ansible Tower - Projects

Project
A project is a logical collection of Ansible Playbooks, represented in Ansible Tower.

You can manage Ansible Playbooks and playbook
directories by placing them in a source code
management system supported by Ansible Tower,
including Git, Subversion, and Mercurial.

Ansible Tower - Credentials

Credentials
Credentials are utilized by Ansible Tower for authentication with various external resources:

● Connecting to remote machines to run jobs
● Syncing with inventory sources
● Importing project content from version control systems
● Connecting to and managing devices

Ansible Tower - Inventory

Inventory
Inventory is a collection of hosts clients (just like the with the engine) with associated data
and groupings that Ansible Tower can connect to and manage.

● Hosts (nodes)
● Groups
● Inventory-specific data (variables)
● Static or dynamic sources

LAB 1
Ansible for i 101

LAB 2

PTF Management advanced
Ansible AWX / Redhat Ansible Tower

Ansible for i Labs

https://ibm.box.com/v/ansible-for-i-lab2

https://ibm.box.com/v/ansible-for-i-lab1

https://ibm.box.com/v/ansible-for-i-lab2
https://ibm.box.com/v/ansible-for-i-lab1

Sequential save on all IBM i systems in the myibmisystems group
serial :1 for sequential execution (single tape drive)
- hosts: myibmisystems

serial: 1
collections:

- ibm.power_ibmi
tasks:

- name: Vary on TAPE
ibmi_device_vary:

device_list: ['TAPVRT01']
status: '*ON'

- name: LODIMGCLG
ibm.power_ibmi.ibmi_cl_command:

cmd: 'LODIMGCLG IMGCLG(VIRTUALTAP) DEV(TAPVRT01)'
become_user: '<userprofile>'
become_user_password: '<userprofilepwd>'

- name: SAVLIB
ibm.power_ibmi.ibmi_cl_command:

cmd: 'SAVLIB LIB(TOTO) ACCPTH(*YES) DEV(TAPVRT01)'
become_user: '<userprofile>'
become_user_password: '<userprofilepwd>'

- name: Vary off TAPE
ibm.power_ibmi.ibmi_device_vary:

device_list: ['TAPVRT01']
status: '*OFF'

ibmi-savelib.yml

[myibmisystems]
10.7.19.71 ansible_ssh_user=benoit
10.7.19.72 ansible_ssh_user=benoit
10.7.19.73 ansible_ssh_user=benoit[ibmi:vars]
ansible_python_interpreter="/QOpensys/pkgs/bin/python3"
ansible_ssh_common_args='-o StrictHostKeyChecking=no'

Answer:
ansible-playbook playbooks/ibmi-savelib.yml

Ansible for i - Example

Q: How do I automate a backup on multiple systems
with a single tape drive?

Ansible for i Demo
https://github.com/bmarolleau/ansible-for-i

demo0-list-inventory.sh
demo1-ptfgroup-check.sh
demo2-disable-usrprf-CL.sh
demo3-fix-imgclg.sh
demo4-sync-apply-ptfgrp.sh

https://github.com/bmarolleau/ansible-for-i
https://github.com/bmarolleau/ansible-for-i/blob/main/demo0-list-inventory.sh
https://github.com/bmarolleau/ansible-for-i/blob/main/demo1-ptfgroup-check.sh
https://github.com/bmarolleau/ansible-for-i/blob/main/demo2-disable-usrprf-CL.sh
https://github.com/bmarolleau/ansible-for-i/blob/main/demo3-fix-imgclg.sh
https://github.com/bmarolleau/ansible-for-i/blob/main/demo4-sync-apply-ptfgrp.sh

