
Integrating OpenSource
with your current
Technology Stack

Koen Decorte

Qui sommes nous?

• IBM i ISV et IBM business partner situé à Anvers, Belgique et à Madrid
Espagne.

• Plus de 40 ans d’éxpérience avec IBM i et ses prédécesseurs.
• Applications : comptabilité, OCR, query tool, MES, ERP
• Expertise en RPG, SQL, PHP, HTML, Unity, nodejs, linux…

• Site web : www.cdinvest.eu
• IBM Champion depuis 2018 et membre CEAC, Trésorier Common

Belgique

• What others talk about, we do.

http://www.cdinvest.be/

Nos Case studies

• JORI : https://www.ibm.com/case-studies/jori

• Fibrocit : https://www.ibm.com/case-studies/fibrocit-systems-furniture-design

• Cras : https://www.ibm.com/case-studies/cras-systems-open-source

• Oris : https://www.ibm.com/case-studies/ORIS

• Deknudt Frames : https://www.ibm.com/case-studies/deknudt-frames

• Bonehill : https://www.ibm.com/case-studies/immo-bonehill-systems-hardware-website-compliance

• Winsol : https://www.ibm.com/case-studies/winsol-systems-hardware-manufacturing-digitization

• Vanmaele : https://www.ibm.com/case-studies/wijnen-van-maele-systems-software-ibm-i

• Steffimmo : https://www.ibm.com/case-studies/steffimmo-systems-software-property-maintenance

• CSM : https://www.ibm.com/case-studies/csm-bvba-systems-hardware-trade-power-i

• Stonetales : https://cms.ibm.com/case-studies/stonetales-properties-power-upgrade

• ID logistics : https://www.ibm.com/it-infrastructure/us-en/resources/power/ibm-i-customer-stories/#/id-logistics/

https://www.ibm.com/case-studies/fibrocit-systems-furniture-design
https://www.ibm.com/case-studies/cras-systems-open-source
https://www.ibm.com/case-studies/deknudt-frames
https://www.ibm.com/case-studies/immo-bonehill-systems-hardware-website-compliance
https://www.ibm.com/case-studies/winsol-systems-hardware-manu
https://www.ibm.com/case-studies/wijnen-van-maele-systems-software-ibm-i
https://www.ibm.com/case-studies/steffimmo-systems-software-property-maintenance
https://www.ibm.com/case-studies/csm-bvba-systems-hardware-trade-power-i
https://cms.ibm.com/case-studies/stonetales-properties-power-upgrade

Agenda

• Introduction aux PASE

• Configuration de l’environnement PASE

• Qu’est qu’un Shell

• XMLSERVICE interaction

Agenda

• Nodejs, PHP et Python et ILE

• L’IBM i Toolkit

• L’outil Unixcmd

• RPG et Pase – nos techniques et astuces

Open Source Examples to use

• Curl

• ImageMagick (convert/mogrify/identify)

• Ghostscript (gs)

• Python (python)

• Tesseract (OCR/Gvision)

• ….

All these tools use a shell command so you need to interact with it !

PASE

Vue d’ensemble de Pase

• En 2000, AIX et OS/400 pouvaient fonctionner sur les mêmes processeurs POWER.

• Cela a créé la possibilité pour les exécutables basés sur MI et AIX de s’exécuter sur le même
hardware et dans la même partition

• PASE permet à ces binaires de s’exécuter dans le même processus

• PASE n’est pas une version d’AIX mais plutôt un ensemble de bibliothèques AIX

▪ Adapté pour communiquer avec SLIC plutôt que directement avec le kernel AIX

• PASE obtient la mémoire des mêmes pools de teraspace SLIC utilisés par ILE

▪ Pour le “program run stack, heap, and shared memory” PASE peut seulement voir la mémoire que PASE a
obtenu par ses propres syscall APIs

Ce que PASE n’est pas

• PASE n’est pas un environnement émulé

• PASE n’est pas un environnement distinct d’IBM I

▪ À titre d’exemple, le même système de fichiers intégré (IFS) est accessible à partir de PASE que de toute
autre partie d’IBM I

▪ Un autre exemple, les applications/outils/programmes démarrés dans PASE peuvent accéder aux données
Db2 et aux programmes ILE

Architecture de Pase

• PASE fournit un ensemble de bibliothèques partagées AIX qui s’exécutent directement sur le
processeur POWER

▪ Les applications dans PASE bénéficient des mêmes performances que les applications exécutées dans une
partition AIX

• Une interface syscall permet aux applications dans PASE d’appeler des applications ILE et
d’accéder aux données Db2

IBM speak

• PASE supports the application binary interface (ABI) of AIX and provides a broad subset of
the support provided by AIX shared libraries, shells, and utilities.

• PASE also supports the direct processing of IBM PowerPC machine instructions, so it does
not have the drawbacks of an environment that only emulates the machine instructions

• PASE applications:

▪ Can be written in C, C++, Fortran, or PowerPC assembler

▪ Use the same binary executable format as AIX PowerPC applications

▪ Run in an IBM i job

▪ Use IBM i system functions, such as file systems, security, and sockets

https://www.ibm.com/support/knowledgecenter/ssw_ibm_i_74/rzalf/rzalfwhatispase.htm

http://www.ibm.com/support/knowledgecenter/ssw_ibm_i_74/rzalf/rzalfwhatispase.htm

IBM speak

• PASE run-time runs on the Licensed Internal Code (LIC) kernel on the IBM i operating system.

• The system provides integration of many common IBM i functions across PASE and other
runtime environments including Integrated Language Environment (ILE) and Java.

• PASE implements a broad subset of AIX system calls

• System support for PASE enforces system security and integrity by controlling what memory a PASE
program can access and restricting the program to use only unprivileged machine instructions

https://www.ibm.com/support/knowledgecenter/ssw_ibm_i_74/rzalf/rzalfwhatispase.htm

http://www.ibm.com/support/knowledgecenter/ssw_ibm_i_74/rzalf/rzalfwhatispase.htm

Intégration – aller d’ici à là (et vice versa)

• Call PASE de l’IBM i
• QSH CMD('ls /home/KOEN’)

• Call IBM i à partir de PASE
• system "WRKOBJLCK OBJ(MYFILE) OBJTYPE(*FILE)"

• Des intégrations plus robustes telles que l’accès aux programmes ILE et
à partir de langages open source sont possibles – nous y reviendrons
plus tard

Configuration de
l’écosystème OSS dans

PASE

Vue d’ensemble de RPM

• Cela permet l’installation de packages open source de manière Linux avec PASE

• La pile RPM contient de nombreux packages, notamment:

▪ Python

▪ Node.js

▪ The 'less' utility

▪ Git

▪ The 'updated' and 'locate' utilities

▪ GCC and other development tools

▪ GNU Nano

▪ Autres…

https://bitbucket.org/ibmi/opensource/src/master/

Les RPM ne sont pas des RPM AIX.

Ce sont des RPM IBM i uniquement

pour le logiciel IBM i. Construit sur

IBM i, pour IBM i.

Installer RPM/YUM

• Step 1: Download the bootstrap file to your PC:
• ftp://public.dhe.ibm.com/software/ibmi/products/pase/rpms/bootstrap.sql

• Step 2: Run the SQL script against the system you want to install
RPMs on

RPM bootstrap

create or replace table qtemp.ftpcmd(cmd char(240)) on replace delete rows;

create or replace table qtemp.ftplog(line char(240)) on replace delete rows;

insert into qtemp.ftpcmd(CMD) values

('anonymous anonymous@example.com')

,('namefmt 1')

,('lcd /tmp')

,('cd /software/ibmi/products/pase/rpms')

,('bin')

,('get README.md (replace')

,('get bootstrap.tar.Z (replace’)

,('get bootstrap.sh (replace')

with nc

;

RPM bootstrap

CL:OVRDBF FILE(INPUT) TOFILE(QTEMP/FTPCMD) MBR(*FIRST) OVRSCOPE(*JOB);

CL:OVRDBF FILE(OUTPUT) TOFILE(QTEMP/FTPLOG) MBR(*FIRST) OVRSCOPE(*JOB);

CL:FTP RMTSYS('public.dhe.ibm.com');

CL:QSH CMD('touch -C 819 /tmp/bootstrap.log; /QOpenSys/usr/bin/ksh /tmp/bootstrap.sh > /tmp/bootstrap.log 2>&1');

select

case when (message_tokens = X'00000000')

then 'Bootstrapping successful! Review /tmp/README.md for more info'

else 'Bootstrapping failed. Consult /tmp/bootstrap.log for more info'

end as result

from table(qsys2.joblog_info('*')) x

where message_id = 'QSH0005'

order by message_timestamp desc

fetch first 1 rows only;

Installing RPM/YUM support

• Step 3: Once the installation of the bootstrap is complete, start a terminal session
▪ This can be done via 5250 command 'call qcmd'

▪ Better yet, an SSH session can be established to the system

• Step 4: Modify the PATH to include the bin directory for the packages installed by the
bootstrap
• PATH=/QOpenSys/pkgs/bin:$PATH export PATH

Useful commands

Command Decscription

bash A shell typically available on Linux systems. Features

include command/file completion, and command
recall.

gcc GNU c Compiler

rpm Used to install/manage packages built using the
Redhat Package Manager.

yum Yellowdog Updated, Modified – a wrapper around

RPM that uses package repositories to simplify

package installation and dependency resolution

Configuration de
l’environnement utilisateur

dans PASE

Création de l’environnement utilisateur

• Un certain nombre d’étapes doivent être accomplies pour créer l’environnement utilisateur

• Step 1: Create the user's home directory

• mkdir /home/<username>

• Step 2: Create a .profile in the user's home directory. The .profile is used to define the shell
environment, including environment variables, scripts to execute, and other commands. The
.profile is used to store pre-defined settings when a shell program starts

PATH=/QOpenSys/pkgs/bin:$PATH

export PATH

bash

– The first two lines update the path statement to include the location of the programs installed both by

the bootstrap as well as subsequent 'yum install' commands

– The third line causes the bash shell to be executed

• NOTE: by default a PASE terminal session starts the 'ksh' shell

Modification du shell par défaut

• Le shell par défaut dans l’environnement PASE est ksh (un favori dans l’espace AIX)
• Une meilleure alternative à ksh est bash - un favori dans l’espace Linux, en

particulier pour ses fonctionnalités telles que le rappel de commandes (flèche
vers le haut) et la complétion de nom de fichier (onglet).

• La fonction ‘qsys2.set_pase_shell_info’ permet de changer le shell par
défaut par utilisateur ou pour tous:

• call qsys2.set_pase_shell_info(‘*DEFAULT’, ‘/QOpenSys/pkgs/bin/bash’);

• Contrôle du default shell:

select authorization_name, pase_shell_path from qsys2.user_info

where pase_shell_path is not null;

Repository definition

• The RPM packages reside in a repository that is publicly accessible
• The definition of the repository is located in the

• /QOpenSys/etc/yum/repos.d directory
▪ The repository file for the IBM RPM pile is ibm.repo

• [ibm] name=ibm

• baseurl=http://public.dhe.ibm.com/software/ibmi/products/pase/rpms/repo enabled=1

• gpgcheck=0

Note: it is possible to use a local repository by downloading the

files from the indicated FTP site and then uploading them to a
directory on the system. The 'baseurl' would change to indicate

'file' and the path to the directory of RPMs.

Additional note: ACS has support for cloning the repository

to a local server

http://public.dhe.ibm.com/software/ibmi/products/pase/rpms/repo

Evironment variables

• An environment variable is a
name/value pair that can affect
running process within a computing
environment
• The current environment can be
output with the 'env' command

Evironment variables – most important
Variable Description

USER Current user logged into system and using the current shell

PWD The current working directory. This is the 'focus' of any command run on the

system

HOME The user's home directory. This is the directory that is typically used for

storage of configuration files that affect a user's login environment as well as

shell characteristics.

NOTE: This directory does not exist by default in the IBM i environment

SHELL The current shell. The environment supports multiple shells including bash

and ksh

LOGNAME The login name of the user

OLDPWD The previous (n-1) working directory

Qu’est-ce qu’un shell ?

Qu’est-ce qu’un shell

• The command line used on “Unix™” systems (as well as Unix-like systems) as well as

PASE

• Like CL it can be used interactively, or run as a program

• Like CL most commands are actually programs that get called
• There are some “built in” commands

• Unlike CL there are a number of varieties of shell
• - sh = bourne shell

• - csh = C shell

• - ksh = korn shell

• - bash = bourne again shell

• - qsh = Q shell

• There are some similarities but also differences

• Most of the discussion here is not operating system specific
Will work on AIX, Linux, QSH in OS/400, other nasty Unix variants, etc

Why do we care about the shell

• All system configuration operations can be done through the
shell – often more quickly then through a GUI

• Shell scripts can automate routine tasks such as backups,
scheduled emails, etc.

• GUI can be used for a great amount of admin activities

However, the shell tends to be a comfort zone providing

ability to fix things in case something goes wrong

Different types of shell

• A number of shells are available each providing function/usability customized to a particular type
of user:

• Popular shells include:

• BASH (Bourne Again Shell)

• PDKsh (Public Domain Korn Shell)

• csh (C shell)

• mc (Midnight Commander)

• QSHELL (PASE shell)

• ksh (Korn shell, default on AIX)

• Difference tends to be in scripting capabilities and user interface

• Items such as command recall and file name completion are typically different

Starting with bash

• Bash stands for Bourne Again Shell
• Started by Brian Fox in 1987

• One of the most popular shells available on Linux

• Bash incorporates features of the Korn and C shell (ksh and csh)

• Bash configuration files:

Available in PASE!

/bin/bash Bash executable

/etc/profile System wide initialization file for login
shells

~/.bash_profile Personal initialization file for login shells

~/.bashrc Personal per-interactive-shell startup file

~/.bash_logout Login shell clean file that executes when
shell exits

A little more on bash

• Default Linux shell

• This can be changed in a variety of ways
• /etc/profile – login shell
• $HOME/.profile

• As we saw earlier, can be set as the default shell for PASE

• Very powerful as a command line shell

• Recall previous commands

• Command and file completion with the <TAB> key

• Many programming features

• Loops and conditionals

Shell environment

The shell is an environment where commands can be entered
and the Operations system can respond to them

A key concept to the environment is environment variables

• There are a large number of environment variables

• HISTFILE: points to file containing the shell history, defaults to ~/.bash_history

• HISTFILESIZE: how man last commands you wish to have in history

• HOME: points to your home directory

• PATH: set of directories to search when trying to execute a command

• PS1: Prompt variable

• USER: username

NOTE: All of these environment variables are available when running bash in the PASE environment.

Exploring the shell

• The shell is the command-interpreter and as such there are a number of features that make
it easier to work in and traverse the environment

• The shell keeps a history of previous commands that have been executed.The 'history'
command can be used to display a list of those commands:

• -bash-4.4# history

1 pwd

2 ls –l

NOTES:

The commands are shown preceded with a number. Any command in the history can be re-executed simply by entering !

Followed by the number from the command history list

Previously executed command can be recalled through use of the up-arrow key.

This allows you to scroll through previously executed commands.

Exploring the shell

• A powerful feature of the bash shell is file-name completion

• File-name completion is accomplished by pressing the <TAB> key after entering a portion of a
file-name.
▪ At this point the shell will complete as much of the name as possible while remaining unique
▪ If there are multiple names that match what has been entered then pressing the <TAB> key twice will show

those matches.

• type ls /QO Press <Tab>

• Notice that the shell completes /QOpenSys/

• Press <TAB> twice

• Notice that the shell provides a list of items under /QOpenSys/

Shell metacharacters
Symbol Description

> Output redirection

>> Output redirection (append)

< Input redirection

* File substitution wildcard; zero or more characters

? File substitution wildcard; one character

[] File substitution wildcard; any character between brackets

`cmd` Command substitution

$(cmd) Command substitution

| The pipe (connect output of command on right to input on command on left)

; Command sequence

|| OR conditional execution

&& AND conditional execution

Shell metacharacters

Symbol& Description

() Group commands

& Run command in the background

Comment

$ Expand the value of a variable

\ Prevent escape interpretation of the next character

<< Input redirection

“$val” Literal with variable substitution

‘$val’ Literal without variable substitution

Why are metacharacters important

• The shell has two primary responsibilities
• Walk the command-line looking for tokens

• Cause a command string to be sent to the kernel

• Tokens are identified by white-space

• The metacharacters are considered tokens

• ls –l /home/koen > /tmp/listing

Usefull shell constructs

• Arrow Up & Down: Scroll through recent commands used

• &&: command is only executed if preceding command was successful:

• command1 && command2

• alias: sets a command alias or prints defined aliases

• alias wrklnk=ls

• bg[jobid]: Resumes the suspended job in the background

• cd: changes current directory to directory indicated

• cd /home

Usefull shell constructs
• echo: Outputs the arguments

• echo "hello world"

• find [path][expression]: searches the directory indicating looking for files that match expression:

• find / -name passwd –print

• pwd – Prints the absolute pathname of the current working directory

• unalias – Removes an alias

• history – displays command history with line numbers

• umask – is a command that determines the settings of mask to control how file permissions are set for new files

• logout: exits the shell environment

• exit [n]: exits shell environment with exit status n

‘bash’-ing PASE

• The bash shell is available for PASE
• It is part of the RPM pile

• Step 1: Install the RPM pile bootstrap

• Step 2: Install bash
• yum install bash

Input and Output

nix programs start with three open files

Input (called stdin) (#0)

Output (called stdout) (#1)

Error output (called stderr) (#2)

We can redirect the output to go to a file by using ">"

• ls –l > output.txt

This will take the output of the "ls –l" command and write it into a file called "output.txt"

Input and Output

You can also specify which output goes to a file

• ls –l 1> output.txt

this is the same as before.

Redirecting only error output

• grep fred * 2> grep.err

this will redirect only the error output to the file
grep.err

Note : 1 = stdout, 2 = stderr

Input and Output

Use the "<" operator to redirect input
Equivalent to typing at the keyboard

For example

• sed "s/koen/Koen/g" < my.txt

This runs the command "sed" (an editor) changing “koen" to “Koen" and taking its input
from a file called "my.txt"

Input and output

• sed "s/koen/Koen/g" < my.txt > my2.txt

Common *nix commands

Unix is built around the idea of lots of little programs that all do
one thing well. Shell programs generally involve stringing lots of
these together

Help for all these is in the “man” (for “manual”) command => man sed Unfortunately man is not available in PASE by
default, you need to install the packages

ls

sed

grep

cat

find

sort

tr

ps

seq

…

lists files

an editor

a searcher

a file outputer

a file locator

sorts files

translates characters

list processes

print a sequence of numbers

a thousand others

All of these are available in the

IFS and can be run from an

IBM i shell (i.e., qsh, ssh

session)

Many available on PASE and

more coming!

Pipes
Standard output (STDOUT) of one command/program is used as the
standard input (STDIN) for the next command/program

• STDOUT (1) STDIN (0)

• ps –x | grep java

List processes, search for any involving java
Only the 'STDOUT' from the last command is actually output to the screen (unless re-

directed) NOTE: Any output to STDERR by the commands will be output to the screen –

again unless re-directed.

NOTE: pipes are not limited to two commands… any number of pipes can be used
to build a pipeline: cmd1 | cmd2 | cmd3 | …. | cmdx

XMLSERVICE

XMLService Overview
• XMLService provides the ability to

invoke programs in the ILE (RPG,Cobol)

as well as CLcommands

• ILE items such as dataareas and data

queues can also beaccessed

• XMLService uses XML payloads both to

define the request and provide the

results

• XMLServicecan be invoked from any

language

http://yips.idevcloud.com/wiki/index.php/XMLService/XMLService

http://yips.idevcloud.com/wiki/index.php/XMLService/XMLService

• While it is possible to build the XML payload "manually", most open-source languages

provide a language-specific toolkit to make building of the XML payload as well as

dehydrating of the resultseasier.

• TheToolkit is a set of classes that essentially "wrap" the calls to the XMLService.

• The toolkit is Object-Oriented based; however, the OO is easy to understand.

The Toolkit

• The toolkit is used to encapsulate the request to XML.

• The toolkit provides the XML request to the XMLService via the HTTPtransport

mechanism

• XMLService dehydrates the XML and invokes the requested CLcommand

CL command invocation – Call Flow [request]

php app Toolkit
Needs CL

command

XML

Servicexml

request

CL

commandinvokes

• Output from the CL command is provided to the XMLService

• XMLService packages the output in an XML-formatted response

• Responseis provided to the Toolkit

• Toolkit dehydrates the XML and provides the CLcommand output to the PHP application.

CL command invocation – Call Flow [response]

output

CL

command XML Toolkit

Service xml

response

php app
CL

command

output

XMLService is not intended to replace storedprocedures

Stored procedures typically provide better performance thanXMLService

For environments that have stored procedures and a comfort level using them can continue to be used.

Peering under the Covers – What does the XML Look
Like

Thecall

The result

Each CDATA

represents a line of

output from

command execution

RPG Program Call – Architectural View

Call_program_RPG.html

callrpg.php

showTable()

submit form

RPG call results
Toolkit

XML

Service

xml

request
RPG

program

invokes

results

xml

responseCall result

RPG call

Node.js calling ILE

It's All Open –
It's All
Available

https://github.com/IBM /

nodejs-itoolkit

Toolkit API Reference

https://www.ibm.com/developerw
orks/community/wikis/home?lang

=en#!/wiki/IBM%20i%20Technolog
y%20Updates/page/Toolkit%20for

%20i%20APIs?section=iSh

http://www.ibm.com/developerw

Installing the Toolkit
• The installation is performed from a PASEshell

$ npm i itoolkit

npm i itoolkit

npm WARN saveError ENOENT: no such file or directory, open

'/QOpenSys/pkgs/lib/nodejs8/include/node/package.json'

npm notice created a lockfile as package-lock.json. You should commit this

file.

npm WARN enoent ENOENT: no such file or directory, open

'/QOpenSys/pkgs/lib/nodejs8/include/node/package.json'

npm WARN node No description

npm WARN node No repository field.

npm WARN node No README data

npm WARN node No license field.

+ itoolkit@0.1.6

added 1 package from 4 contributors and audited 1 package in 1.508s

found 0 vulnerabilities

mailto:itoolkit@0.1.6

Basic Toolkit Flow

Establish aconnection

to XMLSERVICE

Define function for

XML toJSON

conversion

Build the command /

shell script / program

call / SQLcall

Run the command list

var xt = require("itoolkit");

var conn = new xt.iConn("*LOCAL", "USERNAME", "PASSWORD");

function cbJson(str) {

var result = xt.xmlToJson(str);

console.log(JSON.stringify(result, " ",2))
}

conn.add(xt.iCmd(…

conn.add(xt.iSh(…

var Pgm = new xt.iPGM…. / conn.add(pgm);

var sql = new xt.iSQL…. / conn.add(sql);

conn.run(cbJsdon);

Toolkit Example – Basic APIs Initial Include
and Connection
var xt = require("itoolkit");

var conn = new xt.iConn("*LOCAL", "USERNAME", "PASSWORD");

• The'require' statement causes the class definition for the
toolkit to be included

• xt is an object that represents the methods (functions) and properties
(variables) of the itoolkit class

• The'var conn' statement causes the iConn method to be
invoked

• This establishes a connection to the XMLSERVICE

• The variable 'conn' representsthe connection

Basic APIs Converting XML to JSON

• ThexmlToJson converts the output XML document into JSON
format.

• XMLService returns an XMLdocument

• JSON is more compatible with the Java scriptlanguage

• The function will be passed as a parameter to the run method from
the toolkit object which causes the command list to be executed.

function cbJson(str) {

var result = xt.xmlToJson(str);

console.log(JSON.stringify(result, " ", 2))

}

Basic APIs Calling CL and QSHELL Commands

• This statement adds the'RTVJOBA' command to the command list.

• Multiple commands can be put on the command list prior to execution.

conn.add(xt.iCmd("RTVJOBA USRLIBL(?) SYSLIBL(?)"));

conn.add(xt.iSh("system -i wrksyssts"));

• This statement adds the 'system –i wrksyssts'

command as a QSHELLcommand to the command list.

Basic APIs Program/Service Call

var pgm = new xt.iPgm("QWCRSVAL", {"lib":"QSYS"});

var outBuf = [

[0, "10i0"],

[0, "10i0"],

["", "36h"],

["", "10A"],

["", "1A"],

["", "1A"],

[0, "10i0"],

[0, "10i0"]

];

pgm.addParam(outBuf, {"io":"out"});

pgm.addParam(66, "10i0");

pgm.addParam(1, "10i0");

pgm.addParam("QCCSID", "10A");

pgm.addParam(this.errno, {"io":"both", "len" : "rec2"});

conn.add(pgm);

Build a program callwith all necessary I/Oparameters and add it to the command list

Basic APIs SQL Statement
Build an SQLcall and add it to the command list

var sql = new xt.iSql();

sql.prepare("call qsys2.tcpip_info()");

sql.execute();

sql.fetch();

sql.free();

conn.add(sql);

Toolkit Example – Basic APIs
Execute the Command List

conn.run(cbJson);

Note the cbJsonparameter which is the function to

convert the XML (returned by XMLService)to JSON

Toolkit Capabilities
The toolkit capabilities are based on various classes provided by the toolkit

Class Description

iConn Provides various methods for establishing and workingwith

connections between Node.js and IBM i

iPgm Provides methods for working with programs andservice

programs

iSql Provides methods for working with SQLstatements

iWork Provides methods for working with system values andstatus

information as well as retrieving data areacontents.

iProd Provides methods for working with productinformation.

iUserSpace Provides methods for working with UserSpaces

iNetwork Provides methods for working with NetworkInformation

iObj Provides methods for working withObjects

iDataQueue Provides methods for working with DataQueues

PHP calling ILE

Toolkit is Object Oriented

• Series of classes that "wrap" the IBM project

• All PHP but Object Oriented…(wait, there'smore)

• The Toolkit is Open Source

• No OO training required to use them!!!

• Nothing likeOPO!

Toolkit Service Class Documentation: http://files.zend.com/help/Zend-Server/content/toolkit_service_class.htm

http://files.zend.com/help/Zend-Server/content/toolkit_service_class.htm

Simple CL Command Execution

<?php

require_once zend_deployment_library_path('PHP Toolkit for IBMI i') .

'/ToolkitService.php';

try {

$obj = ToolkitService::getInstance();

} catch (Exception $e) {

exit($e->getMessage());

}

$obj->setOptions(array(

'stateless' => true,

'debug' => true,

'debugLogFile' => DIR . '/toolkit-debug.log',

'plugSize' => '32K'

)

);

if (! ($rows = $obj->CLInteractiveCommand('DSPLIBL'))) {

echo $obj->getLastError();

} else {

echo '<pre>' . print_r($rows, true) . '</pre>';

}

$obj->disconnect();

Include ToolkitService class

Establishan instance of the Toolkitclass

Establish parameters for upcomingcall

Call CLIneractiveCommand methodto
invoke the DSPLIBL CL command

Terminate the toolkit connection

Simple CL Command Execution - Output

Invoking RPG

• The program being called has the following

attributes

• Parameter-nameCODE length10 – this value is

being passed into the RPGprogram

• Parameter-nameNAME length10 – this value is

being returned fromthe RPGprogram

• The program name is 'COMMONPGM'

• The program resides in the ZENDPHP7 library

• The program logic indicates that the input

parameter (CODE) will be tested

• A value of '1' returns 'IBM' in the NAME parameter

• A value of '2' returns 'ZEND' in the NAME parameter

• Any other input value returns 'WRONG CODE' in the

name parameter.

The RPG Program Being Called

It is important to understand the parameters, their type and size as

well as the usage (input, output, or both) when building up the call

from the PHP program.

Whendeveloping PHP code to call RPG programs it is recommended

that a single function be developed for each RPG program that will

be called.

The PHP Script – Part 1

<?php

require_once zend_deployment_library_path('PHP Toolkit for IBMI i') .

'/ToolkitService.php';

use ToolkitApi\Toolkit;

try {

$obj = ToolkitService::getInstance();

} catch (Exception $e) {

exit($e->getMessage());

}

$obj->setOptions(array(

'stateless' => true,

'debug' => true,

'debugLogFile' => '/tmp/toolkit-debug.log',

'plugSize' => '32K'

)

);

• Same as the CLexample

• Include the classdefinition for the toolkit

• Setoptions

The PHP Script – Part 2
$param = array();

$code = isset($_POST['code']) ? $_POST['code'] : ' ';

$desc = ' ';

$param[] = Toolkit::AddParameterChar('both', 10, 'Input Code', 'CODE', $code);

$param[] = Toolkit::AddParameterChar('both', 10, 'Output Desc', 'DESC', $desc);

$result = $obj->pgmCall('COMMONPGM', 'ZENDPHP7', $param);

$obj->disconnect();

if (! $result) {

exit('Execution failed');

}

?>

• Add descriptions/attributes for the parameters expected by the RPG program to the $param array. (described in more

detail on subsequent slide)

• Invoke PgmCall() to request execution of theprogram

• Disconnect from XMLService

• Test for valid result

The PHP Script – Part 3

<!DOCTYPE html>

<html lang="en">

<head><style>table, th, td { border: 1px solid black}</style></head>

<body>

<table>

<tr><th>Parameter Name</th><th>Parameter Value</th></tr>

<?php foreach($result['io_param'] as $key => $value) { ?>

<tr><td><?= $key ?></td><td><?= $value ?></td></tr>

<?php } ?>

</table>

Return to Input Form

</body>

• HTML with embedded PHP to output the results of calling the RPG program.

The RPG Program Call –
Defining the Parameters

The Call and Result

HTML form invokes PHPscript

PHP script calls RPG program

(via XMLService) andoutputs

result in HTML response

Service Program Call – Page 1

<?php

require_once zend_deployment_library_path('PHP Toolkit for IBMI i') .

'/ToolkitService.php';

try {

$obj = ToolkitService::getInstance();

} catch (Exception $e) {

exit($e->getMessage());

}

$obj->setOptions(array(

'stateless' => true,

'debug' => true,

'debugLogFile' => '/tmp/toolkit-debug.log',

'plugSize' => '32K'

)

);

• Same as the CL and RPGexamples:

• Include the classdefinition for the toolkit

• Setoptions

Service Program Call – Page 2

$sysValueName = 'QCCSID';

$error = ' ';

$value= ' ';

$param = array();

$param[] = $obj->AddParameterChar('both', 1,'ErrorCode','errcode', $error);

$param[] = $obj->AddParameterChar('both', 10,'SysValName','sysvalname', $sysValueName);

$param[] = $obj->AddParameterChar('both', 1024,'value','sysvalue', $value);

$result = $obj->PgmCall('ZSXMLSRV', "ZENDPHP7", $param, null, array('func'=>'RTVSYSVAL'));

if (! $result) {

$obj->disconnect();

exit("Operation failed. System value $sysValueName not retrieved. Exiting...");

}

print "System value $sysValueName = {$result['io_param']['sysvalue']}";

• Build up the parameter list. Make note of the $sysValueName being set to QCCSID which is going to result in the

QCCSID being returned

• Use the PgmCall() method to invoke the program call (ZSXMLSRV) and library ZENDPHP7 to invoke the RTVSYSVAL

command with the defined parameters

• Test for a valid result

• Output the returned value (indexing into the result array based on the associative index of 'sysvalue')

Service Program Call – Page 3
/* change sysvalname parameter value from QCCSID to QLANGID and run PgmCall() again

PHP arrays are zero-based indexed. We're changing the $param[] on line 27 above . */

$sysValueName = 'QLANGID';

$param[1]->setParamValue($sysValueName);

$result = $obj->PgmCall('ZSXMLSRV', "ZENDPHP7", $param, NULL, array('func'=>'RTVSYSVAL'));

if (! $result) {

$obj->disconnect();

exit("Operation failed. System value $sysValueName not retrieved. Exiting...");

}

print " System value $sysValueName = {$result['io_param']['sysvalue']}";

$obj->disconnect();

• Change the second parameter of the call to 'QLANGID' which is going to result in retrieving the mnemonic variant of

the QCCSID

• Execute the program call

• Output the returned value

Service Program Call – Result / Output

• The value of 37 is output as a result of the first PgmCall() where the SysValName parameter was set to

QCCSID

• The value of ENU is output as a result of the second PgmCall() where the SysValNameparameter was set

to QLANGID

Python calling ILE

Python for IBM i Infrastructure

Built-in &

Installable

Modules

IBM i

iToolkit

XMLSERVICE

Ibm_db2

Db2 for iCLI

Python for IBM i

Python Core

• itoolkit is a wrapper around XMLService that enables programs to call:

• RPG programs and serviceprograms

• CLcommands

• PASE programs and shellscripts

• SQL databaseaccess

• Useful Sites

Overview

Description URL

Itoolkit project https://ibm.biz/itoolkitpython

Python interface to XMLService https://ibm.biz/xmlservice

What Can Be Done?

iToolKitCommand Usage / Description

iCmd Call CL command (even without

output parameters)

iCmd5250 Call CL command and get screenoutput

iPgm Call Program

iSrvPgm Call ServiceProgram

iSh Call PASE Program or ShellScript

iXml Anything else

C
o
m

m
a
n
d
s

P
ro

g
ra

m

s

Transports
Transport Description Notes

Database Stored

procedurecall

overdatabase

connection

• Any PEP-249 connection object can beused

• ibm_db_dbi

• pyodobc

• No configuration needed using ibm_-db_dbi when used locally

• Can use pyodbc with IBMI Access driver

• Local and remote connectionssupported

• Using ibmdb_dbi remotely requires Db2 Connect License

HTTP Calls usingHTTP

RESTAPI
• Requires XMLSERVICE configured as a FastCGI endpoint inApache

• Uses Apache TLS configuration forsecurity

• Local and remote connectionssupported

Direct Runs incurrent

job (Fastest)
• No ConfigurationNeeded

• Somethings don't work from chroot(container)

• Currently broken with 64-bitPython

• Local connection only

SSH Calls over SSH

usingParamiko

package

• Requires xmlservice-cli package installed on targetsystem

• Uses SSH forsecurity

• Local and remote connectionssupported

Connecting
DirectTransport example

from itoolkit import *

from itoolkit.transport import DirectTransport

itransport = DirectTransport()

HttpTransport example

from itoolkit import *

from itoolkit.transport import HttpTransport

itransport = HttpTransport(url, user, password)

E
sta

b
lish

co
n
n
e
ctio

n
u
sin

g

D
ire

ct
tra

n
sp

o
rt

E
sta

b
lish

co
n
n
e
ctio

n
u
sin

g

H
T
T
P

tra
n
sp

o
rt

Connecting (Database Transport Example)

DatabaseTransport examples

from itoolkit import *

from itoolkit.transport import DatabaseTransport

using ibm_db

import ibm_db_dbi

itransport = DatabaseTransport(ibm_db_dbi.connect())

using pyodbc

import pyodbc

itransport =

DatabaseTransport(pyodbc.connect("DSN=myDSN"))

Import itoolkit and

DatabaseTransport

Establish connectionvia

ibm_db_dbi driver

Establish connectionvia

pyodbc driver

Calling Standard CL Commands
itool.add(iCmd('addlible', 'ADDLIBLE TEST'))

itool.call(itransport)

rtvjoba = itool.dict_out('rtvjoba')

if 'error' in rtvjoba:

print("Encountered an error")

Build the call to the ADDLIBLEcommand

Perform the call using thetransport

specified earlier

Get return from CL command call

Check forerror

Output Parameters from CL
Commands
itool.add(iCmd('rtvjoba', \

'RTVJOBA USRLIBL(?) SYSLIBL(?)

CCSID(?N) OUTQ(?)'))

itool.call(itransport)

rtvjoba = itool.dict_out('rtvjoba')

if 'success' in rtvjoba:

print(rtvjoba['row'][0]['USRLIBL'])

print(rtvjoba['row'][1]['SYSLIBL'])

print(rtvjoba['row'][2]['CCSID'])

print(rtvjoba['row'][3]['OUTQ'])

Sim
ila

r to
p
re

vio
u
s

e
xa

m
p
le

e
xce

p
t

u
se

s
p
a
ra

m
e
te

rs

fo
r
call

If command execution succeeds, use

array indexes to output specificvalues

from return value

Output Parameters, Sensible

rtvjoba = { k: v for d in rtvjoba['row'] for k, v in d.items() }

itool.add(iCmd('rtvjoba', \

'RTVJOBA USRLIBL(?) SYSLIBL(?) CCSID(?N) OUTQ(?)'))

itool.call(itransport)

rtvjoba = itool.dict_out('rtvjoba')

if 'success' in rtvjoba:

print(rtvjoba['USRLIBL'])

print(rtvjoba['SYSLIBL'])

print(rtvjoba['CCSID'])

print(rtvjoba['OUTQ'])

The highlighted line is the big difference from the previous example – essentially this statement builds

up the 'rvtjoba' as an array which is indexed by key names returned from execution of the RTVJOBA

command.

Command Display Output

itool.add(iCmd5250('wrkactjob_key', 'WRKACTJOB'))

itool.call(itransport)

wrkactjob = itool.dict_out('wrkactjob_key')

print(wrkactjob['wrkactjob_key'])

Another example – this one using iCMD5250 to call a command and display it's output

Command Display Output

Work with Active Jobs Page 1

5770SS1 V7R2M0 140418 DBCSB3P2 05/09/18 11:18:59 CDT

Reset : *NO

Subsystems : *ALL

CPU Percent Limit : *NONE

Response Time Limit : *NONE

Sequence : *SBS

Job name : *ALL

CPU % . . . : .0 Elapsed time

. :

00:00:00 Activ

e

jobs : 233

Current --------Elapsed--------- Temporary

Subsystem/Job User Number User Type Pool Pty CPU Int Rsp AuxIO CPU% Function Status Threads Storage

QBATCH QSYS 799117 QSYS SBS 2 0 .4 0 .0 DEQW 2 3

QDFTJOBD JENKINS 846920 JENKINS BCH 2 50 .0 0 .0 CMD-QSH EVTW 1 4

QDFTJOBD REDIS 846925 REDIS BCH 2 50 .0 0 .0 CMD-QSH TIMW 1 4

QZSHSH JENKINS 846921 JENKINS BCI 2 50 244.9 0 .0 JVM-jenkins.wa THDW 81 520

QZSHSH KADLER 846858 KADLER BCI 2 50 14.6 0 .0 PGM-python3 SELW 1 20

QZSHSH KADLER 849046 KADLER BCI 2 50 1.0 0 .0 PGM-python3 SELW 1 46

Calling an ILE program

.addData(iData('b', '10i0', '1'))

.addData(iData('c', '12p2', '3.33'))))

itool.call(itransport)

results = itool.dict_out('my_key')

print(results['a'])

print(results['ds']['b'])

print(results['ds']['c'])

Another example – this one using iPGM to call an RPG program

itool.add(iPgm('my_key','MYPGM')

.addParm(iData('a', '1a', 'a'))

.addParm(iDS('ds')

U
se

 iP
G

M
 to

sp
e
cify

th
e
 R

P
G

 p
ro

g
ra

m
to

call w
ith

n
e
ce

ssa
ry

p
a
ra

m
e
te

rs

Perform the call using the transport specified earlier

O
b
ta

in
a
n
d

o
u
tp

u
t
th

e

re
su

lts

Calling a Service Program
itool.add(iSrvPgm('my_key','MYSRVPGM', 'myfunction')

.addParm(iData('a', '1a', 'a'))

.addParm(iDS('ds')

.addData(iData('b', '10i0', '1'))

.addData(iData('c', '12p2', '3.33'))))

itool.call(itransport)

results = itool.dict_out('my_key')

print(results['a'])

print(results['ds']['b'])

print(results['ds']['c'])

Last example – this one using iSrvPGM to call a Server Program
Invoke the

'myfunction' fromthe

'MYSRVPGM' service

programSp
e
cify

p
a
ra

m
e
te

rs
fo

r

th
e

call

M
a
k
e
 th

e
call,

o
u
tp

u
t

th
e

re
su

lts

Perform the callusing

previously configured

transport

Toolkit review

Toolkits

• Toolkits provide the ability to integrate with various features/functions/programs of IBM I

• Node.s toolkit:

• https://bitbucket.org/litmis/nodejs-itoolkit

• PHP Toolkit for IBM i:

• http://yips.idevcloud.com/wiki/index.php/XMLSERVICE/Python

• https://bitbucket.org/litmis/python-itoolkit

• Python itoolkit-lite

• https://bitbucket.org/litmis/nodejs-itoolkit

• Ruby itoolkit

• https://bitbucket.org/litmis/ruby-itoolkit

• Swift

• https://bitbucket.org/litmis/swift-itoolkit

• .NET

• https://github.com/richardschoen/IbmiXmlserviceStd

NOTE: Documentation for

Ruby, Swift, and .NET isnot

sufficient to complete the

capability information

provided on the following

slides

http://yips.idevcloud.com/wiki/index.php/XMLSERVICE/Python

Toolkit Capabilities – Access Db2
Node.js PHP Python

Execute direct SQL statements Yes Yes

Prepare SQL statements (place holders to prevent SQL injection) Yes Yes Yes

Execute prepared statements Yes Yes Yes

Fetch result sets Yes Yes Yes

Return the number of fields in a result set No Yes No

Retrieve columnsand associated privileges for a table No Yes No

Retrieve columns and associated metadata fora table No Yes No

Fetch return sets with associated columnheaders No Yes No

Retrieve field information No Yes No

Retrieve primary keys for atable No Yes No

Retrieve stored procedures registered in adatabase No Yes No

Rollback a transaction No Yes No

Toolkit Capabilities – Access Db2

Node.js PHP Python

Retrieve properties for a DB2Server No Yes No

Retrieve index and statistics for atable No Yes No

Retrieve tables and associated metadata in adatabase No Yes No

Retrieve tables and associated privileges ina database No Yes No

Toolkit Capabilities – Access ILE Applications
and Artifacts

Node.js PHP Python

Execute CLCommands Yes Yes

Call Programs*PGM Yes Yes Yes

Call Service Programs*SRVPGM Yes Yes

Execute 'sh' commands (PASEutilities) Yes No

Build/create a user space Yes

Retrieve information from a command definitionobject Yes

Retrieve information from a programobject Yes

Retrieve Service ProgramInformation Yes

Construct a new data queueobject Yes

Send data to a dataqueue Yes

Retrieve information from a dataqueue Yes

Clear a dataqueue Yes

Toolkit Capabilities - Others

Node.js PHP Python

Get PTF Information Yes

Retrieve TCP/IPattributes Yes

Retrieve Network interface information Yes

Retrieve user's authority to anobject Yes

Retrieve information about a userprofile Yes

Retrieve information about users who are authorized to an object Yes

Unixcmd

Scott Klement – Unixcmd

• See https://community.common.org/webdev/blogs/temporary-
admin1/2018/01/22/a-powerful-way-to-run-unix-and-open-source-
tools-f

• Download at https://www.scottklement.com/unixcmd/

• Tool to run unix programs from RPG or CL in pase wie QP2SHELL API
or Qshell via STRQSH or QSH commands

• Uses open access handler

https://community.common.org/webdev/blogs/temporary-admin1/2018/01/22/a-powerful-way-to-run-unix-and-open-source-tools-f

RPG example

CL example

Calling RPG from PASE

Call QSH from RPG/CL and vice-versa

• There is a special environment variable QIBM_QSH_CMD_OUTPUT.

• The value STDOUT let's you use the stdio ifs api’s to read out the the stdout in
RPG.

• But you can also do it directly to a physical file. This is a technique we use a lot.

• ADDENVVAR ENVVAR(QIBM_QSH_CMD_OUTPUT) VALUE('FILE=lsout.txt')

• ADDENVVAR ENVVAR(QIBM_QSH_CMD_OUTPUT) VALUE('FILEAPPEND=lsout.txt')

• (fileappend will not overwrite but just add.).

Example

PGM
MONMSG CPF0000
ADDENVVAR ENVVAR(QIBM_QSH_CMD_OUTPUT) +

VALUE('FILE=/qsys.lib/shell.lib/lsout.file/+
lsout.mbr')

CRTPF FILE(SHELL/LSOUT) RCDLEN(128)
STRQSH CMD('ls')
ENDPGM

• Content of the ls command will be in pf lsout.

Prestart job technique 1

You can speed up processing by using a prestart job,

which is a job that begins running when a subsystem is started.

When Qshell starts a new process, it will use a prestart job

if one is available. This improves performance,

because the system does not have to start a new job.

Prestart job technique 2

For example, the following command adds a prestart job to

the QINTER subsystem description:

ADDPJE SBSD(QSYS/QINTER) PGM(QSYS/QP0ZSPWP)

INLJOBS(10) THRESHOLD(5) ADLJOBS(10)

JOBD(QGPL/QDFTJOBD) MAXUSE(1) CLS(QGPL/QINTER)

Prestart job technique 3

To make Qshell use a prestart job, place a value of Y

in the environment variable QSH_USE_PRESTART_JOBS.

Use the export command so that child processes will also use prestart
jobs:

export -s QSH_USE_PRESTART_JOBS=Y

Special scripts 1

Special Scripts

When you begin a Qshell session,

it automatically executes the following

three script files, if they exist:

1/ The global profile file, /etc/profile

The system administrator uses this file to set

system-wide options for all users.

Special scripts 2

2/ A file named .profile After running /etc/profile,

Qshell looks in the users home directory for this profile,

which is used for personal customization.

(Yes, it begins with a period, and is pronounced "dot profile.")

The .profile file is a good place to define environment variables ,

including the ENV environment variable. Use the DSPUSRPRF command

to display your HOME directory.

Special scripts 3

3/ The file named in the ENV environment variable Qshell looks to see
if the ENV environment

variable has a value. If so, and if that value is the name of an existing
file, Qshell

executes the file. One of the most common uses of ENV is to define
aliases ,

which are short names for a command.

Qshell runs these script files in the order given here, and in the current
process.

Example to call RPG from qshell with
parameters
RPG and COBOL programs receive parameters in a parameter list. Each
passed parameter value is a null- terminated string.

Unpassed parameters cannot be addressed. Additional parameters,
beyond the number declared, are ignored.

See example RPG source printargs

Example to call RPG from qshell with
parameters
To extract the value of a parameter, use the %STR built-in function.

The %STR function is used in the ExtractParm subprocedure.

ExtractParm accepts a pointer to a parameter and passes that pointer
to the %STR built-in function to access a null-terminated parameter
value.

If a parameter value begins with a hyphen, the remainder of the
parameter is processed as a string of options.

A parameter value that does not begin with a hyphen is assumed to be
the argument of the last option that was found.

Example to call RPG from qshell with
parameters
Since the options may be passed into the program in any sequence,

all of the following commands are equivalent and will produce the
same output:

• /qsys.lib/shell.lib/printargs.pgm -b bval -c -f fval -2

• /qsys.lib/shell.lib/printargs.pgm -2cb bval -f fval

• /qsys.lib/shell.lib/printargs.pgm -f fval -c2b bval

Example to call RPG from qshell with
parameters

STDIO

I sometimes use the QIBM_USE_DESCRIPTOR_STDIO environment variable.
ADDENVVAR ENVVAR(QIBM_USE_DESCRIPTOR_STDIO) VALUE('Y')

This allows you to map the stdin/stdout/stderr as you wish.
You do not have to use ovrdbf or ovrprtf and can communicate with
qp2term (pase) or qp2shell (qsh) directly in both directions.

The stdin = ifs read/write to file descriptor 0
The stdout = ifs read/write to file descriptor 1
The stderr = ifs read/write to file descriptor 2

STDIO example – NBRLINES (demo)

start qsh or qp2term

ls * | /QSYS.LIB/SHELL.LIB/NBRLINES.PGM

this will list the directory content and send it to rpg program

nbrlines who will read the stdin and just add line numbers and

write it back to the unix shell.

Check that your session (config) and job CCSID match !

Remember unixcmd

Scott Klements UNIXCMD works basically the same he just uses a
pipe/spawn. This means he starts a second thread in the job to the unix
command and then connects to the stdin, stdout and stderr through
the pipe created.

I prefer to use it directly.

I have some CGI programs that just write to stdout and read from stdin
instead of using all the CGI-api's. It runs much faster.

QzshSystem() API

To use the QzshSystem() API, you need to first open three temporary files and verify that those files
get descriptor numbers 0, 1, and 2 before calling the API.

You must close the files before the program ends.

The following is the source for RPG program OPENSTDIO to open the three standard I/O file
descriptors stdin (0), stdout (1), and stderr (2).

You should call this program as the first step in your job. If any other activity in the job opens one of
these file descriptors incorrectly, this program will fail and your QSHELL or Java call might not work
correctly.

The main procedure of the program ends with some rudimentary code to report the error; it uses a
DSPLY operation and then it calls the *PSSR subroutine with ENDSR *CANCL which causes an
exception to be sent to the program's caller. You may want to replace this code with a better
mechanism for reporting the error.

OPENSTDIO – Part 1

h thread(*serialize) bnddir('QC2LE') dftactgrp(*no)

D O_CREAT C x'00000008'

D O_TRUNC C x'00000040'

D O_RDONLY C x'00000001'

D O_WRONLY C x'00000002'

D O_RDWR C x'00000004'

D O_ACCMODE c %BITOR(O_RDONLY

D : %BITOR(O_WRONLY

D : O_RDWR))

D S_IRUSR C x'0100'

D S_IROTH C x'0004'

D S_IWUSR C x'0080'

D S_IWOTH C x'0002'

OPENSTDIO – Part 2

D chk pr n

D descriptor 10i 0 value

D mode 10i 0 value

D aut 10i 0 value

D other_valid_mode...

D 10i 0 value

D ok s n

OPENSTDIO – Part 3

/free

// Validate or open descriptors 0, 1 and 2

ok = chk (0

: 0 + O_CREAT + O_TRUNC + O_RDWR

: 0 + S_IRUSR + S_IROTH

: 0 + O_RDONLY)

and chk (1

: 0 + O_CREAT + O_TRUNC + O_WRONLY

: 0 + S_IWUSR + S_IWOTH

: 0 + O_RDWR)

and chk (2

: 0 + O_CREAT + O_TRUNC + O_WRONLY

: 0 + S_IWUSR + S_IWOTH

: 0 + O_RDWR);

OPENSTDIO – Part 4

// If the descriptors were not all correct,

// signal an exception to our caller

if not ok;

dsply ('Descriptors 0, 1 and 2 not opened successfully.');

exsr *pssr;

endif;

*inlr = '1';

begsr *pssr;

endsr '*CANCL';

/end-free

OPENSTDIO – Part 5

P chk b

D chk pi n

D descriptor 10i 0 value

D mode 10i 0 value

D aut 10i 0 value

D other_valid_mode...

D 10i 0 value

D open pr 10i 0 extproc('open')

D filename * value options(*string)

D mode 10i 0 value

D aut 10i 0 value

D unused 10i 0 value options(*nopass)

OPENSTDIO – Part 6

D closeFile pr 10i 0 extproc('close')

D handle 10i 0 value

D fcntl pr 10I 0 extproc('fcntl')

D descriptor 10I 0 value

D action 10I 0 value

D arg 10I 0 value options(*nopass)

D F_GETFL c x'06'

D flags s 10i 0

D new_desc s 10i 0

D actual_acc s 10i 0

D required_acc s 10i 0

D allowed_acc s 10i 0

OPENSTDIO – Part 7

/free

flags = fcntl (descriptor : F_GETFL);

if flags < 0;

// no flags returned, attempt to open this descriptor

new_desc = open ('/dev/null' : mode : aut);

if new_desc <> descriptor;

// we didn't get the right descriptor number, so

// close the one we got and return '0'

if new_desc >= 0;

closeFile (new_desc);

endif;

return '0';

endif;

OPENSTDIO – Part 8

else;

// check if the file was opened with the correct

// access mode

actual_acc = %bitand (flags : O_ACCMODE);

required_acc = %bitand (mode : O_ACCMODE);

allowed_acc = %bitand (other_valid_mode : O_ACCMODE);

if actual_acc <> required_acc

and actual_acc <> allowed_acc;

return '0';

endif;

endif;

return '1';

/end-free

P chk e

QzshSystem - example

• To compile CRTPGM PGM(libraryname/TEST) MODULE(libraryname/TEST) BNDSRVPGM((QSHELL/QZSHAPI))

H DEBUG(*YES)

DQzshSystem PR 10I 0 ExtProc('QzshSystem')

D * value Options(*String)

DCommand s 44A

D rc_qzsh s 10I 0

/free

Command = 'pr -t ' + '/home/test.txt' + ' | ' +

'Rfile -wQ qprint';

rc_qzsh = QzshSystem(Command);

/end-free

C seton lr

Error handling

Unix systems (which QShell attempts to emulate) do not do error handling the
same way as IBM i. Unix programs work like this:

1) Every program has an "exit status", programmers can set this however they like,
but by convention, an exit status of zero means "success", and anything else implies
some sort of error.

2) Error messages are typically printed to the "stderr" (standard error) data stream
that, by default, is printed on the screen.

3) There are a few exceptions that are detected by the OS rather than the program.
These are uncommon, but are sent as "signals".

That is very different from the model used in native IBM i applications. In native
programs, an exception is generated by sending a message, and that message gets
logged to a program message queue. All of the program message queues in a job,
put together, make up the "job log." Unix doesn't work that way.

Error handling

The MONITOR opcode will not catch an error in a Unix program,
because MONITOR is looking for exception messages -- it's designed for
IBM i. And errors won't be in the job log because that's not how Unix
programs work, Unix systems don't even have a job log.

QIBM_QSH_CMD_ESCAPE_MSG envvar tells QShell to send an
escape message when the exit status is nonzero. This allows
you to use MONMSG or MONITOR to capture a failure !

Merci de votre attention

Setting up the OSS
Ecosystem using ACS

The directory structure before install

Directory Description

bin Commands

dev Device files

etc Configuration files

home User home directories

lib Libraries

pkgs Package files / commands

sbin Privileged commands

tmp Temporary files

usr Utilities & applications

var Variable files

• Bootstrapping is the process of installing utilities and repository definitions to enable

the system with the necessary commands for managing open source packages

Bootstrapping OSS

Version 1.1.8

or later of

ACS

Connect to the

system via

SSH

S
u

p
p
o

rt
s

m
a

n
a

g
e

m
e
n

t

o
f
p
a
c
k
a
g
e
s
 i
n

s
e

p
a

ra
te

c
o

n
ta

in
e

rs

Bootstrap not

currently installed

NOTE: An alternate installation

method would be to download the

SQL bootstrap script from

f

tp://public.dhe.ibm.com/software/ibmi/

products/pase/rpms/bootstrap.sql and

run it against your IBM i

136 | Zend by Perforce © 2019 Perforce Software, In. zend.com

Repository definition

• The RPM packages reside in a repository that is publicly accessible
• The definition of the repository is located in the

• /QOpenSys/etc/yum/repos.d directory
▪ The repository file for the IBM RPM pile is ibm.repo

• [ibm] name=ibm

• baseurl=http://public.dhe.ibm.com/software/ibmi/products/pase/rpms/repo enabled=1

• gpgcheck=0

Note: it is possible to use a local repository by downloading the

files from the indicated FTP site and then uploading them to a
directory on the system. The 'baseurl' would change to indicate

'file' and the path to the directory of RPMs.

Additional note: ACS has support for cloning the repository

to a local server

http://public.dhe.ibm.com/software/ibmi/products/pase/rpms/repo

zend.com8 | Zend by Perforce © 2019 Perforce Software,nc.

The directory structure

QOpenSys

etcbin pkgslib tmpsbin varusr

homedev lib sbin tmp usr var

After installing the Open Source bootstrap

/

9 | Zend by Perforce © 2019 Perforce Software, Inc. zend.com

Install new software ACS

yum install <package>

Check for upadtes ACS

yum list upgrades

10 | Zend by Perforce © 2019 Perforce Software, Inc.

zend.com

Perform an update ACS

yum upgrade <package>

yum upgrade

Security Vulnerability! Uh Oh!!!

• https://www.cvedetails.com/cve/CVE-2018-1000007/

http://www.cvedetails.com/cve/CVE-2018-1000007/

What's installed?: ACS

yum list <package>

yum list '*searchword*'

What's available?: ACS

yum list available

Where does all this information come from?

Where does all this information come from?

Where are the RPMs (packages) hosted?

• Open-Source Software team builds .rpm files, then we put
them out on the internet for you:

https://public.dhe.ibm.com/software/ibmi/products/pase/rpms/repo

https://bitbucket.org/ibmi/opensource/src/master/docs/yum/3RD_PARTY_REPOS.md

Automating the Process

20 | Zend by Perforce © 2019 Perforce Software, Inc.

“How can I limit the RPMs available?”

• You need to host your own private RPM repository

“My systems can’t access the internet!”

• You need to host your own private RPM repository on
your company’s intranet

“I need to distribute to many systems”

• Easy to do with Yum – Script or Schedule a Job

“That sounds really hard”

• Yes it does. But it is actually very easy. Let me show you...

Managing your RPMs company wide

IBM .rpm repo

Your private repo Host server

Your IBM i(s)
Or Chroots

21 | Zend by Perforce © 2019 Perforce Software, Inc. zend.com

Managing your RPMs company wide

IBM .rpm repo

Your private repo Host server

Your IBM i(s)
Or Chroots

ACS

22 | Zend by Perforce © 2019 Perforce Software, Inc. zend.com

Distributing updates in 4 easy steps

23 | Zend by Perforce © 2019 Perforce Software, Inc. zend.com

1) Clone the IBM OSS repo to your Host server

2) Create your own repo

3) Point your IBM i systems to your repo

4) Automate…

Step 1: Clone IBM i OSS repo (using ACS)

24 | Zend by Perforce © 2019 Perforce Software, Inc. zend.com

Step 2: Create your own repo (with ACS)

Copy from

source

repo

Create

repo

Make repo

accessible

25 | Zend by Perforce © 2019 Perforce Software, Inc. zend.com

Step 3: Point your IBM i systems to your repo

26 | Zend by Perforce © 2019 Perforce Software, Inc. zend.com

⚫ Now, onto your IBM i systems…

⚫ We have to set up our systems to point to our new
repository

⚫ NOTE: I use ssh to connect to my IBM i, and run bash script.
Some bash commands may be different than QP2TERM
commands!

Step 3: Point your IBM i systems to your repo

27 | Zend by Perforce © 2019 Perforce Software, Inc. zend.com

⚫ This is where the ACS and non-ACS paths meet…

⚫ On your IBM i, run the following command to point yum to the repo

yum-config-manager --add-repo <ip-address-where-hosted>/ibm

yum-config-manager --add-repo <ip-address-where-hosted>

Step 3: Point your IBM i systems to your repo

⚫ When you run yum repolist, you should see your new,
privately hosted repo!

28 | Zend by Perforce © 2019 Perforce Software, Inc. zend.com

Step 3: Point your IBM i systems to your repo

29 | Zend by Perforce © 2019 Inc. zend.com

Summary:

⚫ We created a .repo file in /QOpenSys/etc/yum/repos.d

⚫ We can now get our RPMs on our IBM i directly from our
own repository

Automating updates

IBM .rpm repo

30 | Zend by Perforce © 2019 Perforce Software, Inc. zend.com

Your private repo Host server

Your IBM i(s)

Utilities

• Various utilities are available for working in PASE including
editors, package management tools, and source code control
systems

• By installing the open source bootstrap (shown earlier) tools
such as yum and rpm are available for manage other software
packages

Function

Install a package

Remove a package

Search for a package

List installed packages

List available packages

List all packages

yum command

yum install <package>

yum remove <package>

yum search <package>

yum list installed

yum list available

yum list all

Utilities – Installing an Editor (example)

• Once the bootstrap has been installed, the yum command
along with the repository definition are available to be used
for installation of additional packages

• The 'yum repolist' command can be used to validate
the availability of the repository:

yum repolist

repo id repo name stat

us

ibm ibm 231

repolist: 231

• A check can be made to see if a package with nano is available via the

'yum provides' command:

yum provides nano

nano-2.9.0-0.ppc64 : Small and friendly text editor

Repo : ibm

Utilities – Installing an Editor (an example)

• The package can be installed via the 'yum install' command:

yum install nano

Setting up Install Process

Resolving Dependencies

--> Running transaction check

---> Package nano.ppc64 0:2.9.0-0 will be installed

--> Processing Dependency: lib:/Opens/pkgs/lib/libncurses.so.6(shr_64.o)(ppc64) for package: nano-2.9.0-0.ppc64

--> Running transaction check

---> Package libncurses6.ppc64 0:6.0-2 will be installed

--> Processing Dependency: ncurses-terminfo for package: libncurses6-6.0-2.ppc64

--> Running transaction check

---> Package ncurses-terminfo.ppc64 0:6.0-2 will be installed

→ Finished Dependency Resolution

Dependencies Resolved

==

Package Arch Version Repository Size

==

Installing:

nano ppc64 2.9.0-0 ibm 598 k

Installing for dependencies:

libncurses6 ppc64 6.0-2 ibm 318 k

ncurses-terminfo ppc64 6.0-2 ibm 582 k

Transaction Summary

==

Install 3 Packages

Total download size: 1.5 M

Installed size: 4.9 M

Is this ok [y/N]:

Containers on IBM i

Overview
• Containers allow for the isolation of directories such that different

users can have different environments that are dedicated to their
usage.

• IBM i has the 'chroot' capability available to enable establishing
of what is often referred to as a 'chroot jail' – an isolation of
directories and files.

• The following diagram provides a high-level view of chroot jail:

• In the above example there are two ‘chroot’ jails that sit on top of the host

operating system and the system infrastructure.

• Each “jail” can have their own software installed

35 | Zend by Perforce © 2019 Perforce Software, Inc. zend.com

Installing chroot support

CLI: yum install ibmichroot

Select

install

36 | Zend by Perforce © 2019 Perforce Software, Inc. zend.com

Prompt with

Actions to take

37 | Zend by Perforce © 2019 Perforce Software, Inc. zend.com

• Requirements:

▪ Location of the chroot jail has to be

under the /QOpenSys directory

▪ The person running the 'chroot_setup'

command needs to have *IOSYSCFG and

*ALLOBJ

38 | Zend by Perforce © 2019 Perforce Software, Inc. zend.com

• Command to create the container:

▪ chroot_setup /QOpenSys/<container

name> minimal nls

Building the Container

#

#

#

#

#

#

####### ######

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#######

#

#

#

#

#

#

#

#

#

#

#####

#

#

#

#

#

#

#

#####

#######

#

#

#

#

#

#

#

#

#

#

#

Live IBM i session (changes made).

/QOpenSys/testphp

/QOpenSys/testphp Does not Exist

zend.com39 | Zend by Perforce © 2019 Perforce Software, Inc.

The directory structure

39

/

QOpenSys

etcbin lib tmppkgs sbin varusr

homedev lib sbin tmp usr var

container

QOpenSysdevbin home lib sbin tmp usr var

etcbin pkgslib tmpsbin varusr

After creating a container

Install Packages into Container (CLI)

Install a shell
The shell will be used for CLI

yum –-installroot=/QOPenSys/<container> install bash

Install the open source

language

yum –-installroot=/QOpenSys/<container> install nodejs

Install an editor
Determine package name: yum provides nano

yum –-installroot=/QOpenSys/<container> install nano

Enter container
chroot /QOpenSys/<container> /QOpenSys/pkgs/bin/bash

Install db2 connector

and toolkit (ILE)

npm install idb-connector

npm install toolkit

40 | Zend by Perforce © 2019 Perforce Software, Inc.

Install Packages into Container (ACS)

Specify path for

Container on connect

Select package from

Available Packages tab

Select <Install>

41 | Zend by Perforce © 2019 Perforce Software, Inc. zend.com

• The 'chroot' command can be used to enter the container:

chroot /QOpenSys/<container> /QOpenSys/usr/bin/bash

▪ The first argument is the path to the container.

▪ The second argument is the path (inside the container) of the first program to execute (typically

a shell)

• Configure user profile to automatically enter the container:

CHGUSRPRF USRPRF(<USER>)

HOMEDIR('/QOpenSys/<container>/./home/<USER>')

42 | Zend by Perforce © 2019 Perfore Software, Inc. zend.com

Work in the Container

zend.com43 | Zend by Perforce © 2019 Perforce Software, Inc.

The directory structure

QOpenSys

etcbin pkgslib tmpsbin varusr

homedev lib sbin tmp usr var

container

QOpenSysdevbin home lib sbin tmp usr var

etcbin pkgslib tmpsbin varusr

Effect of entering the container

/

/

Managing Open Source
on IBM i

• Common Tasks:

▪ Install New Software

▪ Check for Updates

▪ Perform an Update

▪ What's installed? Am I exposed to a CVE?

▪ See What's Available

• Techniques

▪ Access Client Solutions

▪ CLI

Package Management Overview

• RPM: RPM Package Manager

▪ Installs and manages individual packages

▪ Works with .rpm files directly

▪ Maintains the RPM database

• yum: Yellowdog Updater, Modified

▪ Acts as a wrapper around RPM

▪ Manages packages and dependencies automatically

rpm and yum Package Managers

RPM primary commands

Command Usage

rpm -i or rpm –-install Install a package

rpm -u or rpm –-upgrade Upgrade a package

rpm -e or rpm –-erase Remove a package

rpm –q Query the rpm database

rpm -v Verify a package

YUM primary commands

Command Usage

yum install <package> Install a package

yum update <package> Upgrade a package

yum remove <package> Remove a package

yum search <searchitem> Search a repository for a package

yum list List packages

yum info <package> Show details about a package

yum provies <command> Find packages that delivers “command”

Managing Packages from inside a Container

• Install 'rpm' and 'yum' into the container:

▪ yum –-installroot=/QOpenSys/<container> install rpm yum

• Install 'yum-utils' into the container:

▪ yum –-installroot=/QOpenSys/<container> install yum-utils

From inside the container

• Establish a repository definition:

yum-config-manager –-add-repo

http://public.dhe.ibm.com/software/ibmi/products/pase/rpms/repo

• At this point you can use the typical package management commands (including ACS)

from within the container

http://public.dhe.ibm.com/software/ibmi/products/pase/rpms/repo

Building packages

Pre-Build Steps
• Install Open Source boot strap
• Install container support
yum install ibmichroot

• Establish container to perform the build in
chroot_setup /QOpenSys/phpbuild minimal nls

• Install headers into container
chroot_setup /QOpenSys/phpbuild chroot_includes

• Install bash into the container
yum install --installroot=/QOpenSys/phpbuild install bash

• Install yum and rpm into the container
yum install –installroot=/QOpenSys/phpbuild install yum
rpm

• Install developer tools group into the container
yum group –installroot=/QOpenSys/phpbuild groups install
"Developer Tools"

• Configure repository inside container
yum-config-manager –-add-repo
http://public.dhe.ibm.com/software/ibmi/products/pase/rpm
s/repo

http://repos.zend.com/ibmiphp/ppc64/

http://public.dhe.ibm.com/software/ibmi/products/pase/rpm

Additional Installs

• bzip2-devel

• curl-devel
• freetype-devel

• libiconv-devel
• libintl-devel
• libjpeg-turbo-devel

• libpng-devel
• libsodium-devel

• libwebp-devel
• libxml2-devel

• libxslt-devel
• sqlite3-devel
• unixODBC-devel

• xz-devel
• gzip

• tar-gnu

Packages can be installed from inside

or outside of the container

Performing the actual build

• Enter the container
chroot /QOpenSys/phpbuild /QOpenSys/pkgs/bin/bash

• Install the source
rpm –Uvh php-7.3.6-0.src.rpm

▪ NOTE: The above command will create a SOURCES and SPECS directory in the
user's home directory

• Perform the build
▪ cd SPECS

▪ rpmbuild –ba php.spec

• Copy the resulting RPMs to the repository

Open Source

What is open source software ?

“Software that gives users rights to run, copy, distribute,

change and improve it as they see it, without them

asking permission from or make payments to any

external group or person”.

Mitre FOSS report 2002

Free as in freedom

• Freedom to study the code
• Freedom to improve the program
• Freedom to run the program anytime, for any purpose on any

machine.
• Freedom to redistribute.

• Free Speech does not mean Free Beer !

Free OSS software

• Apache

• BIND

• Emacs

• FreeBSD

• Ghostscript

• Jakarta

• Jboss

• LaTex

• Linux

• MySQL

• Open Office

• Perl

• Samba

• Sendmail

• Snort

• Squid

Why OSS ?

• Customizable

• Improvable

• Redistributable

• Runs Everywhere, for everyone

• Transparency

• In many cases free of cost

Understanding the open source process and distributions

• Contributors: Submit code changes to maintainers for consideration

• Maintainers: Ownership (from a maintenance viewpoint) of a particular component
(application)
▪ The maintainer is responsible for review of changes submitted by contributors,

incorporation of accepted changes into the component, and releases of an updated
component (application)

End-user influence on open source projects

• End-Users can report defects and request enhancements through the open source application’s defect
tracking system
▪ Typically ‘bugzilla’

• End-users have the “freedom” to review the open source, code their own changes, and submit them to
the open source project maintainer.

Why open source development

• Collaboration is decentralized. Integration is controlled
• Too many resources to fail
• So many eyeballs looking at the code
• Self-motivated , self-assigned programmers.
• Large scale Peer Review
• User Driven requirements
• Developing in open community leads to innovation
• Develops open standards

Assessing open source solutions

• Evaluation/assessment of any solution is imperative to the successful implementation of a quality solution

• Steps in the evaluation process are really no different from those you would use with closed source (or commercial)
solutions, just the time spent differs
▪ Step 1: Identify candidate applications that may meet the business requirements

▪ Step 2: Review existing reviews/evaluations of the application(s)
▪ Step 3: Compare basic attributes of the application(s) with against specific requirements

▪ Step 4: Perform an in depth analysis of the top candidate applications

• While the evaluation steps for proprietary and open source applications are the same the source of information for the
identification and review steps are quite different

▪ Proprietary solutions tend to be identified by the commercial vendor

▪ Typically, the vendor provides documentation and literature on their product(s)
▪ In the Open Source space, target applications are identified through a variety of mechanisms including search engines

and well known open source repositories such as sourceforge.net and freshmeat.net

Open source evaluation

• Sources of information to assist with Identification and Review steps:

▪ The Enterprise Open Source Directory (http://www.eosdirectory.com) provides an on- line catalog of open source
projects

▪ The opensourceCMS site (php.opensource.com) has a ratings page that provides customer ratings of popular CMS
packages

▪ Wikipedia has a list of free and open source applications by category
(http://en.wikipedia.org/wiki/List_of_free_and_open_source_software_packages)

▪ The Free Software Foundation maintains a Free Software Directory (http://directory.fsf.org/)
▪ An Open Source Software Directory, compete with user ratings for the applications, is also available

(http://www.opensourcesofsoftwaredirectory.com)
▪ The InsideCRM web site (http://www.insidecrm.com) provides a list of the top 10 CRM packages. Rankings of CRM

packages can also be found at the CRMSoftware360 website (http://www.crmsoftware360.com)
▪ The wiki rankings available on the web are somewhat dated; however, you might want to take a look at the Top 5 open

source Wiki engines article on the Tech Corner web site (http://www.benh.org/techblog/)
▪ OSS Watch (http://www.oss.watch.ac.uk) can be a great resource for obtaining advice and guidance on the use,

development and licensing of open source software applications

http://en.wikipedia.org/wiki/List_of_free_and_open_source_software_packages)
http://directory.fsf.org/)
http://www.benh.org/techblog/)

Open source evaluation

• Factors to consider

Reputation: What is the application's reputation for performance and reliability
▪ Some of the sites on the previous slide provide information on what others have experienced with the application

▪ Reputation of an application is often directly related to its popularity
− While it's hard to gauge the popularity of a particular open source application there are some metrics that can be used

to anecdotally determine the popularity such as download counters for the product as well as site counters for
Internet based applications

Ongoing effort: Is there an ongoing effort to continue development of the application including both defect resolution as
well as incorporating enhancements and new functionality?

▪ Places to look for this information include the application web site

▪ Another good place to look would be the sourceforge web site

Standards: Does the application adhere to a documented set of standards?
▪ Is there a requirement for the solution to be able to integrate with other applications?

− What are the integration capabilities of the application under review?

Open source evaluation

• Factors to consider

Documentation: What level of documentation is available for the open source application?
▪ Popular open source applications like the SaMBa file server and Apache web server have a wealth of documentation available including

both open source as well as commercial resources
▪ For less popular open source applications it is possible that documentation may lag release of product versions

Versioning: When was the last stable version of the application released?
Ensure that there is an ongoing development effort for the application
▪ Be aware that version numbers in open source don't necessarily follow the conventions of commercial applications

− As an example, often times when evaluating commercial applications customers will tend to stay away from those applications whose
version numbers end in a zero (0) as that represents the first release of a new version of the application

− This may not be the case in open source – where 1.0 usually represents the first release of a commercial application, version 0.1 may
represent the first version of an open source application

− Keep in mind there is no “standard” for version numbers in the open source space.

Licensing: Review and understand the licensing aspects of the product and that it meets the requirements

▪ Not all open source licenses are created equal

Open source evaluation

• Factors to consider

• Review of application literature should provide information necessary for the comparison of functions provided to those
required
▪ Keep in mind – this comparison will only be as good as the initial definition of the requirements to be satisfied

• Functional review should result in a subset (typically one or two) candidate applications migrating to the top of the
“desired” list

• Here's the fun part!! Establish a test environment and kick the tires of those application(s) that you want to
further review
▪ Leverage the virtualization capabilities of the Power system to establish a Linux test LPAR (or KVM guest, or even a

Docker container) for further evaluation of the application(s)

• Once the application face-off is complete, put the winning application into production.

Timeline open source on IBM i

IBM support

More than just break/fix

The web is driven by open source

• Languages
• PHP

• Python

• Ruby

• Javascript

• Packages
• JSON / XML

• Swagger API
framework

• SOAP libraries

• Web frameworks

- Application
Framework/Servers

• Apache Tomcat / TomEE

• Jboss EAP

• Greenfish

• Rails

• Epxress.js

• Salis.js

• Django

• Bottle

• Flask

- HTTP Servers
• Apache HTTP Server

• nginx

• Eclipse Jetty

Open source skills are in high demand
• Open Source skills are the skills being sought

after

• Universities and trade schools offer wide-range of
open-source related courses

https://www.tiobe.com/tiobe-index/

http://www.tiobe.com/tiobe-index/

